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Polar phase  of 1D large spin bosons. 



For large S the number of relevant interactions is  
reduced to 2: 

(i)  density-density one and  
(ii)  pairing. 

If the paring interaction is attractive something like 
BCS pairing takes place, 

BUT 
for bosons. 



The model: for 2S+1 >> 1 one may keep only two terms: 
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where n,m = - S, …+S; N = 2S+1.  

The most interesting situation occurs when g1 > 0. 

Hubbard-Stratonovich transformation: 
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The saddle point action 

€ 

S = Ψω ,k,m
+ ,Ψ−ω ,−k,−m( )

k,m,ω
∑ iω −ε (−1)mΔ

(−1)mΔ+ −iω −ε

 

 
 

 

 
 

Ψω ,k,m

Ψ−ω ,−k,−m
+

 

 
 

 

 
 ,

ε = k 2 /2M −µ, µ = µ0 − iλ0.
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Mean field spectrum:


!6 !4 !2 2 4 6

10

20

30

40

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

!

m/ng0

€ 

η =
1
2π

Mg0
n



Saddle point 
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After taking the integrals we obtain: 
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Low energy effective theory: Luttinger liquid. 
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Conclusions of part 1: 

  At 2S+1 >> 1 and g1 > 0 the predominant interaction 
is pairing. The phase is a condensate of singlet pairs 
with quasi-long-range order.  

  Since the scaling dimension of the order parameter  
quickly becomes <<1 with increase of density, the 
saddle point approximation is robust.  



Part II: Magnetic field. Exact solution in Low Energy 
sector. 

According to Jiang et.al. (2010) the model has U(1)xSO(2S+1) symmetry. 

Hence at low energies it is described by Luttiger liquid + O(2S+1)  
nonlinear sigma model: 

The sigma model is exactly solvable even 
in magnetic field (Zamolodchikov, 
Zamolodchikov 1978). 

Assumption: thermodynamic equilibrium. 
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Bethe Ansatz equations 
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S+1 coupled algebraic equations 
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Magnetization 
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When the magnetic field exceeds the critical  value, a second condensate  
(of uncoupled pairs ) appears. 

As a result, we have two gapless modes. 



Conclusions II. 

  In a finite magnetic field there is an interval of fields 
where ferromagnetic liquid of unpaired bosons 
coexists with a polar condensate. 


