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OUTLINE
BEC realizations of pumped collective excitations in CM

• BEC of exciton polaritons and photons in microcavities

• BEC of parametrically pumped magnons

Spin pumping by magnons

Spin-torque induced magnon BEC vs classical instabilities

Dynamic phase diagram/experimental proposal/feasibility (YIG)



BEC IN SOLID STATE
Exciton polaritons in semiconductor microcavities:

Photons in an optical microcavity:

Deng et al., Science (2002); Kasprzak et al., Nature (2006); Balili et al., Science (2007)

Klaers et al., Nature (2010)



BEC OF MAGNONS
Parametric microwave pumping of magnons in YIG:

YIG is the material of the choice due to its low Gilbert damping

Demokritov et al., Nature (2006)
Demidov et al., PRL (2008)



SPIN PUMPING BY MAGNONS
Parametrically pumped magnons induce ISHE voltage

Sandweg, Serga, Saitoh, Hillebrands et al., PRL (2011)

Bauer and YT, Physics (2011)

cf. Berger, PRB (1996)

spin
torque

spin
pumping



SPIN TORQUE VS SPIN PUMPING

Slonczewski, JMMM (1996)

YT, Brataas, and Bauer, PRL (2002)

The traditional picture of spin torque

is accompanied with the thermodynamic reciprocal called spin 
pumping:



SPIN-TRANSFER RECIPROCITY

spin torque spin pumping

m(r,t) jc(r,t), jq(r,t)

τ

f

∂tm− αm× ∂tm = −γm×Heff + τ

L̂∂tj+ ρ̂j = E + f

Interaction of magnetic spin textures and electric (charge/spin/
heat) currents:

YT and Mecklenburg (2008)
YT and Wong (2009)



SPIN-MAGNON EXCHANGE

Kajiwara, Saitoh et al., Nature (2010)



OUR GOAL
We want to develop a viable dc-transport route to inducing BEC 
of magnons in magnetic thin-film heterostructures

Microwave agitation of the ferromagnet is replaced by electronic 
spin pumping
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FI/NM INTERFACIAL EXCHANGE
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|mL� is an eigenket of the linearized (i.e., noninteracting
magnon) left Hamiltonian ĤL; in other words, it is an
element of the Fock space of Holstein-Primakoff (HP)
magnons, each indexed by the mode number q. The
magnon spectrum �q is gapped [min(�q) = �gs > 0] by
the presence of the magnetic field or anisotropy. Mean-
while, |mR� is an element of electron Fock space and
represents an antisymmetrized product of single-particle
states corresponding to quasiparticle Hamiltonian ĤR,
each indexed by orbital quantum number k and spin σ.

Itinerant electrons in the conductor are coupled across
the insulator-conductor interface to the magnetic mo-
ments of the insulator by a generic exchange interaction.
We suppose that this interaction V̂int can be phenomeno-
logically written in terms of creation (annihilation) oper-
ators ĉ†q (ĉq) for free HP magnons and creation (annihi-

lation) operators a†kσ (akσ) for conduction electrons:

V̂int =
�

qkk�

Vqkk� ĉqâ
†
k�↑âk↓ +H.c. , (1)

where σ =↑ or ↓ denote electron spin in the +z or −z

directions, respectively. Information about scattering off
of the static component of the insulator magnetization is
entirely contained in the conduction electron wavefunc-
tion ψkσ (x), which we consider to have a finite albeit ex-
ponentially vanishing extension into the insulator; more
specifically, ψkσ (x) are eigenstates of the total mean-field
Hamiltonian, including the interaction just on the inside
of the insulator between the evanescent conduction elec-
tron tails and the static z component of the insulator
magnetization. We approximate the static component
of the magnetization as spatially uniform in what fol-
lows. The effect on conduction electron scattering due to
the rotating magnetization component in the xy plane,
i.e., Eq. (1), which we consider small in comparison to
the static component, is responsible for spin pumping [6]
and spin-transfer torque [7, 8] and treated perturbatively
below.

The first term on the right-hand side of Eq. (1) de-
scribes a magnon (carrying spin up �) annihilating in
the insulator to create a spin-down hole/spin-up elec-
tron pair in the conductor, while its Hermitian conjugate
(H.c.) corresponds to a reverse electron spin-flip scat-
tering off the insulator-conductor interface to create a
magnon. The scattering amplitude Vqkk� is assumed to
be a full matrix element describing this process. Notice
that while energy is exchanged in this interaction, mo-
mentum is not generally conserved. Moreover, this is not
the only means by which conduction electrons can ex-
change energy with the magnetic insulator: One could,
for example, write down an inelastic scattering term of
the form ∼ ĉ

†
q� ĉqâ

†
k�σâkσ that conserves magnon num-

ber (and therefore preserves the spin of the scattering
conduction electron), which physically corresponds to a
deviation of the spin-conserving part of the Hamiltonian

from its mean-field form. Since such a process does not
contribute to the flow of spins across the interface, how-
ever, it becomes irrelevant when temperatures are main-
tained by thermal reservoirs. It should also be noted that
the presence of shape anisotropy generally gives rise to
elliptical magnons. The elliptical magnon operators b̂q

and b̂
†
q are linear combinations of circular magnon oper-

ators ĉq and ĉ
†
q, so that ĉq and ĉ

†
q no longer diagonalize

ĤL. While our detailed analysis in the following assumes
circular magnons, a finite magnon eccentricity is not ex-
pected to significantly alter our findings qualitatively.
The total Hamiltonian can be expanded as Ĥtot =

ĤL+ ĤR+ V̂int+ ĤT + Ĥenv, where ĤT is a thermalizing
Hamiltonian that contains magnon-magnon interactions
and conduction electron-electron interactions, while Ĥenv

describes interactions between magnons and conduction
electrons with their environments: magnon-phonon cou-
pling, electron-phonon coupling, etc. Here we consider
dephasing effects significant enough that coherence be-
tween the left and right subsystems is destroyed and the
density matrix for the entire system is always in the form
ρ̂tot = ρ̂L ⊗ ρ̂R. We further assert, subject to sufficiently
fast thermalization in respective subsystems, that

Tr[ρ̂Râ
†
σkâσ�k� ] = nF (βR(�k − µσ)) δkk�δσσ� ,

Tr[ρ̂Lĉ
†
qĉq� ] = nB (βL(�q − µL)) δqq� , (2)

where nF (x) = (ex + 1)−1 and nB(x) = (ex − 1)−1 are
the (quasiequilibrium) Fermi-Dirac and Bose-Einstein
distributions, respectively, and �k (�q) is the electron
(magnon) spectrum. Because each subsystem maintains
internal equilibrium, magnons obey Bose-Einstein statis-
tics while conduction electrons are described by a Fermi-
Dirac distribution. Information about the allotment of
spin and energy between them is now contained in the
inverse temperatures βL and βR, the chemical potential
µσ for conduction electrons with spin σ, and the effective
magnon chemical potential µL (which does not have to
vanish in a pumped system). Note that µL ≤ �gs, where
�gs is the ground-state magnon energy; the magnons be-
come Bose-Einstein condensed when µL = �gs.
It is straightforward to calculate the spin current (per

interfacial area A) j flowing into the insulator from the
conductor in terms of temperatures and chemical poten-
tials to lowest order in V̂int using Fermi’s golden rule:

j =
1

A

d �Sz
L�

dt
= jgs + jex, (3)

where the ground-state, jgs, and excited, jex, magnon
contributions are functions of the magnon chemical po-
tential µL, electron spin accumulation ∆µ = µ↑ − µ↓,
and their temperatures TL and TR. In the thermody-
namic limit, the spin-current density jgs, describing the
rate of flow of ground-state magnons into and out of
the insulator, is proportional to the number of ground-
state magnons Ngs per insulator volume VL, ngs =
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THERMODYNAMICS OF SPIN TRANSPORT

Eq. (6) suggests that spin flow to and from excited magnon states vanishes when there is no thermal or spin gradient,
i.e., when βL = βR and ∆µ = µL. However, when either of these conditions is not met, jex �= 0 and spin (as well as
energy) is transported across the insulator/conductor interface. In a steady state (i.e., zero spin current), in normal
phase with thermal bias, βR − βL �= 0, a spin chemical potential difference δµ = ∆µ− µL develops to oppose it:

δµ ≈ (βR − βL)

�∞
�gs

d� (�− µ̄) (�−∆µ)n�
B

�
β̄ (�− µ̄)

�

β̄
�∞
�gs

d� (�−∆µ)n�
B

�
β̄ (�− µ̄)

� ,

where β̄ ≡ (βL + βR) /2, µ̄ ≡ (µL +∆µ) /2, n�
B = ∂�nB(�), and the thermodynamic biases are assumed to be small

(i.e. βR − βL � β̄, δµ � µ̄).

On the other hand, the condensed spin current jgs is independent of both TL and TR, and, provided �gs > ∆µ,
always carries spin away from the conductor, irrespective of the temperature gradient between the two systems. The
explanation for this behavior can be understood as follows. Consider a single tunneling event involving the creation
(destruction) of a ground-state magnon (∆Ngs = ±1) and the corresponding creation of a down-(up-)spin electron-
hole excitation in the conductor (∆NR = −∆Ngs), which we call process A (B) in Fig. 4. The entropy change in the
insulator associated with either process vanishes when the magnons form a BEC, so that the entropy change of the
whole system is just dSR, which can be found by enforcing energy conservation:

∆Stot = ∆SR =
1

TR
(�gs −∆µ)∆NR .

Thus, process B (A) is favored (∆NR ≷ 0) for tunneling events involving ground-state magnons when �gs ≷ ∆µ, in
agreement with Eq. (4). Put differently, if ∆µ = 0 the phase space of the conductor is unaffected with either the
introduction of an up-spin excitation or the introduction of a down-spin excitation. However, process A requires the
conductor to surrender an energy quantum �gs to the insulator, whereas process B means a net gain in energy for the
conductor; the overall entropy gain in the conductor (and therefore the entire system) is thus greater for process B
than A. The zero-temperature version of this explanation is presented graphically in Fig. 4.
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FIG. 4. A down electron may relax the ferromagnetic insulator, carrying away the excess energy away in a scattering state
above the Fermi surface �F (process B). An incident up electron on the Fermi surface, however, cannot transfer up spin to the
insulator magnetization (process A), since such an energy-preserving process would raise the energy of the magnet, lowering
that of the electron and therefore landing it below the Fermi surface, which is Pauli blockaded. Process B therefore dominates,
and the insulator magnetization relaxes towards the easy axis.



SPIN TRANSPORT EQUATIONS
The total (z axis) spin current

consists of the ground-state (condensed) magnon contribution

as well as the thermal magnon contribution

which is enhanced if TL <TR

2

|mL� is an eigenket of the linearized (i.e., noninteracting
magnon) left Hamiltonian ĤL; in other words, it is an
element of the Fock space of Holstein-Primakoff (HP)
magnons, each indexed by the mode number q. The
magnon spectrum �q is gapped [min(�q) = �gs > 0] by
the presence of the magnetic field or anisotropy. Mean-
while, |mR� is an element of electron Fock space and
represents an antisymmetrized product of single-particle
states corresponding to quasiparticle Hamiltonian ĤR,
each indexed by orbital quantum number k and spin σ.

Itinerant electrons in the conductor are coupled across
the insulator-conductor interface to the magnetic mo-
ments of the insulator by a generic exchange interaction.
We suppose that this interaction V̂int can be phenomeno-
logically written in terms of creation (annihilation) oper-
ators ĉ†q (ĉq) for free HP magnons and creation (annihi-

lation) operators a†kσ (akσ) for conduction electrons:

V̂int =
�

qkk�

Vqkk� ĉqâ
†
k�↑âk↓ +H.c. , (1)

where σ =↑ or ↓ denote electron spin in the +z or −z

directions, respectively. Information about scattering off
of the static component of the insulator magnetization is
entirely contained in the conduction electron wavefunc-
tion ψkσ (x), which we consider to have a finite albeit ex-
ponentially vanishing extension into the insulator; more
specifically, ψkσ (x) are eigenstates of the total mean-field
Hamiltonian, including the interaction just on the inside
of the insulator between the evanescent conduction elec-
tron tails and the static z component of the insulator
magnetization. We approximate the static component
of the magnetization as spatially uniform in what fol-
lows. The effect on conduction electron scattering due to
the rotating magnetization component in the xy plane,
i.e., Eq. (1), which we consider small in comparison to
the static component, is responsible for spin pumping [6]
and spin-transfer torque [7, 8] and treated perturbatively
below.

The first term on the right-hand side of Eq. (1) de-
scribes a magnon (carrying spin up �) annihilating in
the insulator to create a spin-down hole/spin-up elec-
tron pair in the conductor, while its Hermitian conjugate
(H.c.) corresponds to a reverse electron spin-flip scat-
tering off the insulator-conductor interface to create a
magnon. The scattering amplitude Vqkk� is assumed to
be a full matrix element describing this process. Notice
that while energy is exchanged in this interaction, mo-
mentum is not generally conserved. Moreover, this is not
the only means by which conduction electrons can ex-
change energy with the magnetic insulator: One could,
for example, write down an inelastic scattering term of
the form ∼ ĉ

†
q� ĉqâ

†
k�σâkσ that conserves magnon num-

ber (and therefore preserves the spin of the scattering
conduction electron), which physically corresponds to a
deviation of the spin-conserving part of the Hamiltonian

from its mean-field form. Since such a process does not
contribute to the flow of spins across the interface, how-
ever, it becomes irrelevant when temperatures are main-
tained by thermal reservoirs. It should also be noted that
the presence of shape anisotropy generally gives rise to
elliptical magnons. The elliptical magnon operators b̂q

and b̂
†
q are linear combinations of circular magnon oper-

ators ĉq and ĉ
†
q, so that ĉq and ĉ

†
q no longer diagonalize

ĤL. While our detailed analysis in the following assumes
circular magnons, a finite magnon eccentricity is not ex-
pected to significantly alter our findings qualitatively.
The total Hamiltonian can be expanded as Ĥtot =

ĤL+ ĤR+ V̂int+ ĤT + Ĥenv, where ĤT is a thermalizing
Hamiltonian that contains magnon-magnon interactions
and conduction electron-electron interactions, while Ĥenv

describes interactions between magnons and conduction
electrons with their environments: magnon-phonon cou-
pling, electron-phonon coupling, etc. Here we consider
dephasing effects significant enough that coherence be-
tween the left and right subsystems is destroyed and the
density matrix for the entire system is always in the form
ρ̂tot = ρ̂L ⊗ ρ̂R. We further assert, subject to sufficiently
fast thermalization in respective subsystems, that

Tr[ρ̂Râ
†
σkâσ�k� ] = nF (βR(�k − µσ)) δkk�δσσ� ,

Tr[ρ̂Lĉ
†
qĉq� ] = nB (βL(�q − µL)) δqq� , (2)

where nF (x) = (ex + 1)−1 and nB(x) = (ex − 1)−1 are
the (quasiequilibrium) Fermi-Dirac and Bose-Einstein
distributions, respectively, and �k (�q) is the electron
(magnon) spectrum. Because each subsystem maintains
internal equilibrium, magnons obey Bose-Einstein statis-
tics while conduction electrons are described by a Fermi-
Dirac distribution. Information about the allotment of
spin and energy between them is now contained in the
inverse temperatures βL and βR, the chemical potential
µσ for conduction electrons with spin σ, and the effective
magnon chemical potential µL (which does not have to
vanish in a pumped system). Note that µL ≤ �gs, where
�gs is the ground-state magnon energy; the magnons be-
come Bose-Einstein condensed when µL = �gs.
It is straightforward to calculate the spin current (per

interfacial area A) j flowing into the insulator from the
conductor in terms of temperatures and chemical poten-
tials to lowest order in V̂int using Fermi’s golden rule:

j =
1

A

d �Sz
L�

dt
= jgs + jex, (3)

where the ground-state, jgs, and excited, jex, magnon
contributions are functions of the magnon chemical po-
tential µL, electron spin accumulation ∆µ = µ↑ − µ↓,
and their temperatures TL and TR. In the thermody-
namic limit, the spin-current density jgs, describing the
rate of flow of ground-state magnons into and out of
the insulator, is proportional to the number of ground-
state magnons Ngs per insulator volume VL, ngs =

3

Ngs(µL, TL)/VL:

jgs = 2π |Vgs|2 (∆µ− �gs) g
2
Rngs . (4)

Here, gR is the Fermi-level density of states of conduction
electrons and

|Vgs|2 ≡VL

A

�
VR

gR

�2 � d3k

(2π)3
d3k�

(2π)3
|V0k�k|2

× δ (�k − �F ) δ (�k� − �F ) , (5)

where �F is the Fermi energy (assumed to be much larger
than �gs and temperature) and VR volume of the conduc-
tor. Note that the current density jgs is only present in
the thermodynamic limit in BEC phase, µL = �gs. On
the other hand, the spin-current density jex (carrying
spin transfer via the excited magnon states) is present in
both normal and BEC phases and, after some manipula-
tions, can be written as

jex =2π

� ∞

�gs

d� |Vex(�)|2 (∆µ− �) g2RgL(�)

× [nB (βL(�− µL))− nB (βR(�−∆µ))] , (6)

in terms of the energy-dependent density of magnon
states gL(�). The (relatively weakly) energy-dependent
quantity

|Vex(�)|2 ≡ VL

AgL(�)

�
VR

gR

�2 � d3k

(2π)3
d3k�

(2π)3
d3q

(2π)3
|Vqk�k|2

× δ (�k − �F ) δ (�k� − �F ) δ (�q − �) (7)

contains information about inelastic transition rates in-
volving excited magnons.

The dynamics of spin flow across the interface are
therefore determined by the sum of the condensate cur-
rent density jgs, which is determined by spin accumula-
tion in the conductor and the ground-state magnon en-
ergy �gs (and thus the applied magnetic field), and the
thermal current density jex, which depends on both tem-
perature and spin-potential biases. Note that sufficiently
large spin splitting ∆µ in the conductor could, in princi-
ple, drive spin density into the insulator until the required
density of magnons is attained and the system undergoes
Bose-Einstein condensation. In a recent experiment by
Sandweg et al. [10], spin pumping into a metal by mag-
netic insulator is driven by the presence of parametrically
excited magnons; in addition, a spin current between the
metal and insulator arises from a thermal gradient as dis-
cussed above. The authors of Ref. [10] made use of the
inverse spin Hall effect, wherein spin diffusion along a
metal strip produces detectable Hall signal. Reciprocally,
an electric current could be used to generate spin accu-
mulation on the surface of a metal via the spin Hall effect;
this surface spin accumulation may then drive magnons
into the insulator [11].
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FIG. 2. Behavior of ngs as predicted by the rate equation,
ṅgs = jtot/�dL = jc/�dL−αngs/�. If jc had the sign opposite
to that shown in the figure, the crossing point jc/αdL would
fall in the normal phase (ngs = 0), thus precluding a BEC
formation.

We henceforth focus on the regime where the temper-
atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ �gs alone. Let
us further suppose that spin accumulation∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = �gs),
nex reaches and remains pinned at this value, nc, and
only ngs is free to vary. In BEC phase, then, the time
dependence of ngs is given by

ngs(t) =
jc
αdL

+

�
ngs(0)−

jc
αdL

�
e−αt/� , (8)

where the excited magnon flux jc = jex(µL → �gs) is time
independent, as long as µL is anchored by the condensate
at �gs, α = 2π |Vgs|2 (�gs −∆µ) g2R/dL, and dL = VL/A
is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > �gs (so
that α < 0) and ngs(0) > jc/αdL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
second regime, ∆µ > �gs but ngs(0) < jc/αdL (requiring
jc < 0), ngs decreases towards zero, and the system en-
ters normal phase. The last two regimes (corresponding
to jc > 0 and jc < 0), which are of more interest to us,
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We henceforth focus on the regime where the temper-
atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ �gs alone. Let
us further suppose that spin accumulation∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = �gs),
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only ngs is free to vary. In BEC phase, then, the time
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is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > �gs (so
that α < 0) and ngs(0) > jc/αdL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
second regime, ∆µ > �gs but ngs(0) < jc/αdL (requiring
jc < 0), ngs decreases towards zero, and the system en-
ters normal phase. The last two regimes (corresponding
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Ngs(µL, TL)/VL:

jgs = 2π |Vgs|2 (∆µ− �gs) g
2
Rngs . (4)

Here, gR is the Fermi-level density of states of conduction
electrons and
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(2π)3
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(2π)3
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× δ (�k − �F ) δ (�k� − �F ) , (5)

where �F is the Fermi energy (assumed to be much larger
than �gs and temperature) and VR volume of the conduc-
tor. Note that the current density jgs is only present in
the thermodynamic limit in BEC phase, µL = �gs. On
the other hand, the spin-current density jex (carrying
spin transfer via the excited magnon states) is present in
both normal and BEC phases and, after some manipula-
tions, can be written as

jex =2π

� ∞

�gs

d� |Vex(�)|2 (∆µ− �) g2RgL(�)

× [nB (βL(�− µL))− nB (βR(�−∆µ))] , (6)

in terms of the energy-dependent density of magnon
states gL(�). The (relatively weakly) energy-dependent
quantity

|Vex(�)|2 ≡ VL

AgL(�)

�
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(2π)3
d3k�

(2π)3
d3q

(2π)3
|Vqk�k|2

× δ (�k − �F ) δ (�k� − �F ) δ (�q − �) (7)

contains information about inelastic transition rates in-
volving excited magnons.

The dynamics of spin flow across the interface are
therefore determined by the sum of the condensate cur-
rent density jgs, which is determined by spin accumula-
tion in the conductor and the ground-state magnon en-
ergy �gs (and thus the applied magnetic field), and the
thermal current density jex, which depends on both tem-
perature and spin-potential biases. Note that sufficiently
large spin splitting ∆µ in the conductor could, in princi-
ple, drive spin density into the insulator until the required
density of magnons is attained and the system undergoes
Bose-Einstein condensation. In a recent experiment by
Sandweg et al. [10], spin pumping into a metal by mag-
netic insulator is driven by the presence of parametrically
excited magnons; in addition, a spin current between the
metal and insulator arises from a thermal gradient as dis-
cussed above. The authors of Ref. [10] made use of the
inverse spin Hall effect, wherein spin diffusion along a
metal strip produces detectable Hall signal. Reciprocally,
an electric current could be used to generate spin accu-
mulation on the surface of a metal via the spin Hall effect;
this surface spin accumulation may then drive magnons
into the insulator [11].
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FIG. 2. Behavior of ngs as predicted by the rate equation,
ṅgs = jtot/�dL = jc/�dL−αngs/�. If jc had the sign opposite
to that shown in the figure, the crossing point jc/αdL would
fall in the normal phase (ngs = 0), thus precluding a BEC
formation.

We henceforth focus on the regime where the temper-
atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ �gs alone. Let
us further suppose that spin accumulation∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = �gs),
nex reaches and remains pinned at this value, nc, and
only ngs is free to vary. In BEC phase, then, the time
dependence of ngs is given by
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where the excited magnon flux jc = jex(µL → �gs) is time
independent, as long as µL is anchored by the condensate
at �gs, α = 2π |Vgs|2 (�gs −∆µ) g2R/dL, and dL = VL/A
is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > �gs (so
that α < 0) and ngs(0) > jc/αdL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
second regime, ∆µ > �gs but ngs(0) < jc/αdL (requiring
jc < 0), ngs decreases towards zero, and the system en-
ters normal phase. The last two regimes (corresponding
to jc > 0 and jc < 0), which are of more interest to us,
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rent density jgs, which is determined by spin accumula-
tion in the conductor and the ground-state magnon en-
ergy �gs (and thus the applied magnetic field), and the
thermal current density jex, which depends on both tem-
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large spin splitting ∆µ in the conductor could, in princi-
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density of magnons is attained and the system undergoes
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FIG. 2. Behavior of ngs as predicted by the rate equation,
ṅgs = jtot/�dL = jc/�dL−αngs/�. If jc had the sign opposite
to that shown in the figure, the crossing point jc/αdL would
fall in the normal phase (ngs = 0), thus precluding a BEC
formation.
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atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ �gs alone. Let
us further suppose that spin accumulation∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = �gs),
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only ngs is free to vary. In BEC phase, then, the time
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independent, as long as µL is anchored by the condensate
at �gs, α = 2π |Vgs|2 (�gs −∆µ) g2R/dL, and dL = VL/A
is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > �gs (so
that α < 0) and ngs(0) > jc/αdL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
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jc < 0), ngs decreases towards zero, and the system en-
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rent density jgs, which is determined by spin accumula-
tion in the conductor and the ground-state magnon en-
ergy �gs (and thus the applied magnetic field), and the
thermal current density jex, which depends on both tem-
perature and spin-potential biases. Note that sufficiently
large spin splitting ∆µ in the conductor could, in princi-
ple, drive spin density into the insulator until the required
density of magnons is attained and the system undergoes
Bose-Einstein condensation. In a recent experiment by
Sandweg et al. [10], spin pumping into a metal by mag-
netic insulator is driven by the presence of parametrically
excited magnons; in addition, a spin current between the
metal and insulator arises from a thermal gradient as dis-
cussed above. The authors of Ref. [10] made use of the
inverse spin Hall effect, wherein spin diffusion along a
metal strip produces detectable Hall signal. Reciprocally,
an electric current could be used to generate spin accu-
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ṅgs = jtot/�dL = jc/�dL−αngs/�. If jc had the sign opposite
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fall in the normal phase (ngs = 0), thus precluding a BEC
formation.

We henceforth focus on the regime where the temper-
atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ �gs alone. Let
us further suppose that spin accumulation∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = �gs),
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at �gs, α = 2π |Vgs|2 (�gs −∆µ) g2R/dL, and dL = VL/A
is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > �gs (so
that α < 0) and ngs(0) > jc/αdL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
second regime, ∆µ > �gs but ngs(0) < jc/αdL (requiring
jc < 0), ngs decreases towards zero, and the system en-
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EXPERIMENTAL PROPOSAL
Starting with the classical spin-torque instability in YIG/PT bilayer

•  reduce the Pt SHE current slightly below its critical value

• thermally anchor YIG layer relative to Pt by a cool substrate

The larger the YIG/PT temperature difference, the wider the 
subcritical current window for the BEC phase

Kajiwara, Saitoh et al., Nature (2010)



DETECTION AND OUTLOOK
The proof-of-principle for transport-induced BEC of magnons can 
be confirmed by Brillouin light scattering or detection of coherent 
microwave emission (with BEC coherence reflected in the 
characteristic scaling of signal with lateral size of the YIG/Pt bilayer)

The dc steady-state realization of BEC would open new avenues 
for realization of superfluidity, macroscopic coherent phenomena, 
and nonlocal transport scenarios that are not feasible in a 
traditional microwave-pumped realization of magnon condensates

First condensed-matter realization of BEC of bosonic excitations 
in an electrically-driven system?



SUMMARY
The quantized form of spin-transfer torque and pumping captures 
both the classical Gilbert damping and torque-driven instabilities

This description also provides a natural language for discussing 
dilute electronically-pumped magnon gases, which can condense in 
a steady-state dc transport regime, requiring

• (SHE) current-induced classical instability in a magnetic insulator film with 
low intrinsic Gilbert damping (compared to spin pumping): 

• cooling the magnetic layer relative to the normal-metal layer (Seebeck)

• optical/microwave/nonlocal transport probes to confirm coherence of the 
condensate

d � 1 µm


