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Minimal model for this material

Minimal model for this phenomenon



‘ Ferromagnetism ‘

&

‘Metal‘

4

Mechanisms:
Stoner
Double Exchange

‘Insulator‘

4
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Fe
lron Age ~ 1200 BC

Fe;O0, magnetite Lodestone
~800 BC ~28 centuries ago

cf Superconductors ~ 100 years

Semiconductors ~ 50 years




‘Ferromagnetism in ultracold atomic gases ‘

&

‘Metal‘ ‘Insulator‘
Mechanisms: Mechanisms:
Stoner: hard sphere interactions; Superexchange:
upper branch Strongly interacting
Double Exchange ? 2 component bosons




Outline:

(1) Stoner mechanism in continuum; atomic gases

(2) Search for a minimal lattice model of ferromagnetism

» Fe:itinerant and local moment character
» Manganites: Double Exchange (DE)
» Double Perovskites: Modified DE mechanism

(3) Proposal for DE in Atomic Gases

General Theme: Searching for minimal models
Bringing together atomic gases and condensed matter systems




Part 1: Stoner Mechanism
(in continuum)

E. Stoner (1933) Philos. Mag. 15, 1018-1034

“Atomic moments in ferromagnetic metals and alloys with
nonferromagnetic elements”

K. Huang (1987), “Statistical Mechanics” Sec. 11.7




P
TEXT BOOK H — io + = Z ‘ ,”
PROBLEM 2m

10
v(r) Hard Sphere interaction
betweenT‘L spins
Hard sphere diameter
a = range
a r

Pilati et al, PRL 105, 030405 (2010)
Chang, Randeria, and Trivedi, PNAS 108, 51 (2011)



Quantum Monte Carlo  — H F(ri)®per®re)
at T=0 o] |

* QMC essential: MFT estimates of FM can be wrong by

orders of magnitude -- electron gas

« Jastrow: f(r) non-zero outside hard core radius a

* Backflow cannot be ignored apriori:
not including it led to
spurious FM instability in normal He-3
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Hard Sphere

Total Energy
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Partially Polarized Phase: |l order Phase Transition
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Has the Stoner transition been seen in
cold atom experiments?
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V(r)
V(r
Upper Branch of (r) ga}:d
Feshbach resonance pnere
____________________ r
; Scattering length
a> 0 :
a>> range Hard sphere diameter
| Upper Branch a = range
E) = > effective
. |  repulsion

N
T~ Lower branch:
== E<0bound state.




Universality

(independent of details of interaction potential)



f— Upper Branch

Total Energy
Hard Sphere
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Contact Physics:  lim n(k) = C/k

Upper Branch Hard Sphere
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Upper branch; life time effects

If three-body processes leading to molecule formation can be suppressed,
there may be a window of time-scales where equilibrium physics in the
upper branch would be observed

[1] G. Jo, et al, Science 325, 1521 (2009).

[2] A. Sommer, M. Ku, G. Roati, and M. W. Zwierlein, Nature 272, 201 (2011).

[3] C. Sanner, E. J. Su, W. Huang, A. Keshet, J. Gillen, and W. Ketterle, arXiv:1108.2017
[4] E. Taylor, S. Zhang, W. Schneider, and M. Randeria, arXiv:1106.4245.
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(1) Stoner mechanism in continuum; atomic gases

(2) Search for a minimal lattice model of ferromagnetism

>| Fe: itinerant and local moment character |

» Manganites: Double Exchange (DE)
» Double Perovskites: Modified DE mechanism

(3) Proposal for DE in Atomic Gases




Why is the problem of FM of Fe
a difficult theoretical problem?
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Local Moments exist above Tc concomitantly with a Fermi surface

S. V. Vonsovsky, Magnetism, vol.2 (1974);
Ferromagnetic materials, vol. 1, ed. by E.P. Wolfarth (1986).



(a) Fe: no clean separation between
local moment vs itinerant character
Analogy:
band SDW to Heisenberg Local moments
BCS to BEC
(b) Manganites:
Some separation between local moment
and itinerant carriers
(c) Double Perovskites:
Clear separation of local moment
and itinerant carriers



Role of amplitude and phase fluctuations:

Er

BCS BEC

attraction
I, =min(A,,p;)

M. Randeria, Nat. Phys., 6, 561 (2010).
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What is a minimal lattice model that shows FM?
Guidance from Condensed matter systems

> Narrow band width

Enhances Coulomb correlations
» Multi degenerate and orthogonal orbitals

Hund’s coupling
Local moment on an atom

» Ordering of Local moments



Double-Exchange in Manganites

— e Ingredients:
Mn#* = 3d? A  Large Hund’s coupling: Spins are aligned
* Cubic crystal field: t,, and e, orbitals

Mn3+ = 3d4 A Qutcome:

y i t, * 3eint,, formsa large spin $=3/2
- treat classically

* Mn3* the extra e  delocalizes in e,

— treat quantum mechanically

Zener, Phys. Rev. 82 403 (1951)
Anderson & Hasegawa, Phys. Rev. 100 675 (1955)



Double-Exchange in Manganites
r—

A QM rotation of axis of quantization

11 i>=cos(8/2)|1 j>+sin(8/2)]|| j>

Then calculate the matrix elements

<— Zener

<Vi|H|t j>=cos(8/2)t

it unitcell j*" unitcell .
(Mn“+) (Mn3*) Anderson-Hasegawa calculated for 2 unit cells

1+S5.°S5.
|
2

m—) H=t\/

Maximizing KE drives the core spins to align ferromagnetically
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Double Perovskites

A,BBO, (ABO3)(AB'O3)

3 ' CrIMn| Fel| B

4d | Mo | Tc | Ru

g | W | Re | Os

Tunability....



o Half-metal
SraFeMoOs o Ferrimagnet

o Tc=420K

O. Erten, O. N. Meetei et al,
"Theory of half-metallic ferrimagnetism in double perovskites"
Phys. Rev. Lett. 107, 257201 (2011)

SroCrOsOg

o Mott insulator
o Ferrimagnet

o Tc=720K

O. N. Meetei, O. Erten et al,
(to be submitted)

3d

4d

5d

Cr

Mn

Fe

Mo

Tc

Ru

Re

Os




Sputter deposited Sr,FeMoO, films
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Hauser et al., Phys. Rev. B 83, 014407 (2011). 12



Sr2 F@MOOG

Fe’t — 3d°

+ 4, :
+ + +t291 — b

S=5/2

Cubic crystal field

Fe Mo

9

v
=t2g T —_—

Ttinerant electrons

33

" largelJy ) | S=5/2

spins

in t2g orbitals

Quantum electrons
+ Classical Fe Spins

Fe Mo
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uantum electrons /—\
Quantt | %'\

+ Classical Fe Spins

t2gT l
o el-spin anti-parallel S=52
to Fe spin tygs

o "double exchange”

H = — Z ( z]U(IT Cig + h.c ) —I—AZ(IT d;|
(ij),0
— f/ Z (('Io_('jo— -+ h.('.) ILZJT = —1 (zq‘)’/z 5111(91/2)

((i7)).0 IL?JJ( — te—iﬁf)i/z COS(Q{_/Q)



Solving the Full Hamiltonian ’

"Slow" variables "Fast” variables:

Localized Itinerant electrons ("Mo")
5=5/2 Fe spins -~ Quantum

- Classical S — (0,¢)| = Exact

- Monte Carlo (MC) Diagonalization (ED)

"ED+MC” method

t=0.27 eV,
t'/t=0.1; A/t=25

* D. D. Sarma et al, PRL 85, 2549 (2000);
Inpufr paramg’rers * R. Mishra, O. Restrepo, W. Windl, P. Woodward,
consistent with DFT

Chem. Mater. 22, 6092 (2011).



Half-metallic Ground State

6 I T 0

Fe tgg¢—1\"'10 tgg¢

antibonding
3 o
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bonding (0.0) (O T (mm (0.0)

T-dependence of DOS
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Conduction Electron Magnetism
tied to Fe-Spin Magnetism

4
=.

2'_ 105
00001 o008
T/t
O Meg X M(T)
o | P(T) o M(T)

Ferri-
Magnetization  magnetism

4
M =DM, — M.y
M., = Ny — 11y
14 —|—Il¢

Polarization ( at Ef )
~ N+(0) = N, (0

N——"




Conduction Electron Magnetism
proportional to Fe-Spin Magnetism

- Effective Hamiltonian for

classical Fe-spins
must describe all magnetic properties

« computationally &
« conceptually simpler

38
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Generalize the 2-site \a *—o
Anderson-Hasegawa (1955) NN ,\;g

analysis for manganites to 11 e T
Double Perovskites NNN-T S0

Jo eo—o—eo—o

Exact solution for 2-unit cells ®Fe oMo
> Low-energy effective Hamiltonian for DP's

Hepp=—=J1)  fi(Si-Sj)—J2 Y fa(Si-S;)
(2,7) ((2.7))

fi(e) =8V2+ V2 +2u * Different from both
falr) = (5 +V5)V6 + 23 + 20 Heisenberg and A-H
Hamiltonians

* KE sets the scale of ferromagnetic exchange J1 and J2



Validating the Effective Spin Model:
Compare M(T) with that of the Full Model

* Heff works
0.9 O ED+MC
— H

5 eff * NN + NNN
20.6 - Heisenberg
= model does not
=
=031 - FM exchange

) Ji1and J2 are

0 1 T-independent
0 0.04 0.08

T/t

40
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Magnetization M(T) and Tc

MC Calculations using Heff Finite Size Scaling
on LxLxL systems
T<TC
& 1 F Ney —
3 (o8, & %—?g 5
x L=16 |
: >T % y
Ol il X
o1 T Mo
00 200 400 600 SLIN\T—T |
T (K) d=30(3) e="—F—
> State-of-the-art calculation urnyerﬂsafl)ﬁy c_lass
of Tc that includes critical p=0.362 v=0.704

thermal fluctuations >Tc = 0.14t
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System:

40K (two species, up and down) ‘. ’
Mott insulator in a deep optical lattice VWWW\/

®Li (single species) do *not* see optical lattice
but will interact with #°K up and 4°K down

a; >0 ag >0y 67,
with different scattering lengths O\N\¢ 0¢\f¢ %
a, (Li-*°K up) and a, (Li- “°K down).

Consider the case when interaction
Between °Li and 4°K are repulsive,
depending on spins



Li sees an external potential which *depends*
on the magnetic structure of the 4°K atoms.

Schematic diagrams External potential seen by ©Li
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Is it possible to tune the filling of °Li, the scattering length a, and a,,
to realize either F or AF ordering of #°K?

Total energy of system:

Ep(”a ai, a’2)

(paramagnetic background of spins)

n=1, first band filled

Use band width dependence on al and a2
to make ferromagnetic state favorable
(double exchange mechanism)

Ef(’n/, ai, CLZ)

(ferromagnetic background)

Eaf (n7 aq, CL2> n=0.5, first band is half filled,

Use gap opening at pi/2a to favor AF

(antiferro background)

Advantage: Tc scale set by delocalized Li primarily




Future....

* Itinerant FM: double exchange mechanism in
atomic gases; scale for Tc set by Fermi energy

 Multiorbital Mott insulators
* Doped multiorbital Mott insulators;
novel states
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