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  Emulator	
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Minimal	
  model	
  for	
  this	
  material	
  
	
  
	
  
	
  
	
  
Minimal	
  model	
  for	
  this	
  phenomenon	
  



Mechanisms:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  Stoner	
  	
  	
  	
  	
  	
  	
  	
  

Double	
  Exchange	
  

FerromagneOsm	
  

Metal	
   Insulator	
  

Mechanisms:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Superexchange	
  

Fe	
  
Iron	
  Age	
  ~	
  1200	
  BC	
  

Fe3O4	
  magneOte	
  Lodestone	
  
	
  	
  	
  	
  	
  	
  	
  ~800	
  BC	
  ~28	
  centuries	
  ago	
  
cf	
  Superconductors	
  	
  ~	
  100	
  years	
  	
  
Semiconductors	
  ~	
  50	
  years	
  



Mechanisms:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Stoner:	
  hard	
  sphere	
  interacOons;	
  
upper	
  branch	
  	
  	
  	
  	
  	
  	
  	
  
Double	
  Exchange	
  ?	
  

FerromagneOsm	
  in	
  ultracold	
  atomic	
  gases	
  

Metal	
   Insulator	
  

Mechanisms:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Superexchange:	
  	
  
Strongly	
  interacOng	
  	
  
2	
  component	
  bosons	
  	
  



General	
  Theme:	
  	
  	
  	
  Searching	
  for	
  minimal	
  models	
  
Bringing	
  together	
  atomic	
  gases	
  and	
  condensed	
  maLer	
  systems	
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(1)	
  Stoner	
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  in	
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  atomic	
  gases	
  
	
  
(2)	
  Search	
  for	
  a	
  minimal	
  laQce	
  model	
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  ferromagneOsm	
  
	
  
Ø  Fe:	
  iOnerant	
  and	
  local	
  moment	
  character	
  
	
  
Ø Manganites:	
  Double	
  Exchange	
  (DE)	
  
	
  
Ø  Double	
  Perovskites:	
  	
  Modified	
  DE	
  mechanism	
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  Proposal	
  for	
  DE	
  in	
  Atomic	
  Gases	
  	
  
	
  



Part	
  1:	
  Stoner	
  Mechanism	
  
(in	
  conOnuum)	
  

E.	
  Stoner	
  (1933)	
  Philos.	
  Mag.	
  15,	
  1018-­‐1034	
  
“Atomic	
  moments	
  in	
  ferromagneOc	
  metals	
  and	
  alloys	
  with	
  
nonferromagneOc	
  elements”	
  
K.	
  Huang	
  (1987),	
  “StaOsOcal	
  Mechanics”	
  Sec.	
  11.7	
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V(r)	
   Hard	
  Sphere	
  interacOon	
  
between	
  	
  	
  	
  	
  	
  	
  spins	
  	
  

Hard	
  sphere	
  diameter	
  
a =	
  range	
  

TEXT	
  BOOK	
  
PROBLEM	
  

a	
   r	
  

PilaO	
  et	
  al,	
  PRL	
  105,	
  030405	
  (2010)	
  	
  	
  	
  	
  	
  	
  
Chang,	
  Randeria,	
  and	
  Trivedi,	
  PNAS	
  108,	
  51	
  (2011)	
  



Quantum Monte Carlo 
at T=0 

•  QMC essential: MFT estimates of FM can be wrong by  
                            orders of magnitude -- electron gas  

•  Backflow cannot be ignored apriori:  
 not including it led to  
 spurious FM instability in normal He-3 

•  Jastrow: f(r) non-zero outside hard core radius a  

η(r) 

r Ro Chang,	
  Randeria,	
  and	
  Trivedi,	
  PNAS	
  108,	
  51	
  (2011)	
  



Fermi	
  
Liquid	
  

Total Energy 

PerturbaOon	
  
Theory:	
  

[Lee-­‐Yang,	
  
Galitskii]	
  

Fermi Liquid to FM 
transition at kfa = 0.9 

Hard Sphere 

FM	
  

Chang,	
  Randeria,	
  and	
  Trivedi,	
  PNAS	
  108,	
  51	
  (2011)	
  

(close	
  packing)	
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P = (N↑ – N↓)/(N↑ + N↓) 

Shallow	
  minima	
  in	
  0.8≤ kFa ≤ 0.96 
ParOally	
  polarized	
  state	
  

ParOally	
  Polarized	
  Phase:	
  II	
  order	
  Phase	
  TransiOon	
  



	
   	
  Has	
  the	
  Stoner	
  transiOon	
  been	
  seen	
  in	
  	
  
	
   	
   	
   	
  cold	
  atom	
  experiments?	
  

	
  



V(r)	
   V(r)	
  

r	
  

r	
  

Upper Branch of 
Feshbach resonance 

Hard 
Sphere 

Scattering length 
a > 0 

a >> range Hard sphere diameter 
a = range Upper Branch 

à  effective 
   repulsion 

E	
  



Universality	
  
(independent	
  of	
  details	
  of	
  interacOon	
  potenOal)	
  



Upper Branch	
   Hard Sphere 

FM	
   FM	
  
Fermi	
  
Liquid	
  

Fermi	
  
Liquid	
  

Total Energy 

PerturbaOon	
  
Theory:	
  

[Lee-­‐Yang,	
  
Galitskii]	
  

Fermi Liquid to FM transition at kfa = 0.9 



 EOS 

Contact Physics:  
Upper Branch Hard Sphere 



	
   	
  	
  
Upper	
  branch;	
  life	
  Ome	
  effects	
  

	
   	
  	
  
	
   	
  If	
  three-­‐body	
  processes	
  leading	
  to	
  molecule	
  formaOon	
  can	
  be	
  suppressed,	
  	
  
	
   	
  there	
  may	
  be	
  a	
  window	
  of	
  Ome-­‐scales	
  where	
  equilibrium	
  physics	
  in	
  the	
  	
  
	
   	
  upper	
  branch	
  would	
  be	
  observed	
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Why	
  is	
  the	
  problem	
  of	
  FM	
  of	
  Fe	
  	
  
a	
  difficult	
  theoreOcal	
  problem?	
  
	
  



S.	
  V.	
  Vonsovsky,	
  MagneOsm,	
  vol.2	
  (1974);	
  
	
  FerromagneOc	
  materials,	
  vol.	
  1,	
  ed.	
  by	
  E.P.	
  Wolfarth	
  (1986).	
  

Local	
  Moments	
  exist	
  above	
  Tc	
  concomitantly	
  with	
  a	
  Fermi	
  surface	
  	
  



	
  (a)	
  	
  Fe:	
  no	
  clean	
  separaOon	
  between	
  	
  
	
   	
   	
  local	
  moment	
  vs	
  iOnerant	
  character	
  
	
  	
  	
  	
   	
   	
  Analogy:	
  	
  
	
   	
   	
   	
  band	
  SDW	
  to	
  Heisenberg	
  Local	
  moments	
  
	
   	
   	
  	
  	
   	
  BCS	
  to	
  BEC	
  

	
  (b)	
  Manganites:	
  
	
   	
   	
  Some	
  separaOon	
  between	
  local	
  moment	
  	
  
	
   	
   	
  and	
  iOnerant	
  carriers	
  

	
  (c)	
  Double	
  Perovskites:	
  
	
   	
   	
  Clear	
  separaOon	
  of	
  local	
  moment	
  	
  
	
   	
   	
  and	
  iOnerant	
  carriers	
  

	
  
	
  
	
  
	
  



aLracOon	
  

! 

Tc =min(" 0,#S )

Role	
  of	
  amplitude	
  and	
  phase	
  fluctuaOons:	
  

M.	
  Randeria,	
  Nat.	
  Phys.,	
  6,	
  561	
  (2010).	
  



Double	
  occupancy	
  suppressed	
  
Local	
  Moments	
  form	
  

! 

Tch ~U

! 

TNeel ~ J = 4t 2 /U

Local	
  moments	
  	
  
order	
  anOferromagneOcally	
  

Band	
  AnOferromagneOsm	
   Heisenberg	
  model	
  
for	
  local	
  moments	
  

! 

N" = N#;N fermions = Nsites;d = 3

Repulsive	
  U	
  Hubbard	
  model	
  

Energy	
  in	
  units	
  of	
  t	
  
	
  
	
  	
  

	
   	
   	
   	
  3D	
  Repulsive	
  U	
  Hubbard	
  model	
  

[t]	
  

[t
]	
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What	
  is	
  a	
  minimal	
  laQce	
  model	
  that	
  shows	
  FM?	
  
Guidance	
  from	
  Condensed	
  maLer	
  systems	
  	
  
	
  
Ø Narrow	
  band	
  width	
  

	
   	
   	
   	
  Enhances	
  Coulomb	
  correlaOons	
  
Ø MulO	
  degenerate	
  and	
  orthogonal	
  orbitals	
  
	
   	
   	
   	
  Hund’s	
  coupling	
  	
  
	
   	
   	
   	
  Local	
  moment	
  on	
  an	
  atom	
  

Ø Ordering	
  of	
  Local	
  moments	
  
	
  	
  



Double-­‐Exchange	
  in	
  Manganites	
  

Mn4+	
  →	
  3d3	
  
	
  
	
  
	
  
	
  
Mn3+	
  →	
  3d4	
  

eg	
  
	
  
t2g	
  

eg	
  
	
  
t2g	
  

Outcome:	
  
•  3e-­‐	
  in	
  t2g	
  forms	
  a	
  large	
  spin	
  S=3/2	
  	
  

	
  →	
  treat	
  classically	
  
•  	
  Mn3+	
  	
  the	
  extra	
  e-­‐	
  delocalizes	
  in	
  eg	
  

	
  →	
  treat	
  quantum	
  mechanically	
  

Ingredients:	
  
•  Large	
  Hund’s	
  coupling:	
  Spins	
  are	
  aligned	
  
•  Cubic	
  crystal	
  field:	
  t2g	
  and	
  eg	
  orbitals	
  	
  

Zener,	
  Phys.	
  Rev.	
  82	
  403	
  (1951)	
  
Anderson	
  &	
  Hasegawa,	
  Phys.	
  Rev.	
  100	
  675	
  (1955)	
  
	
  



Double-­‐Exchange	
  in	
  Manganites	
  

ith	
  unitcell	
  	
  
(Mn4+)	
  

jth	
  unitcell	
  	
  
(Mn3+)	
  

t	
  

>↓+>↑>=↑ jji |)2/sin(|)2/cos(| θθ

θ	
  	
  

QM	
  rotaOon	
  of	
  axis	
  of	
  quanOzaOon	
  

Then	
  calculate	
  the	
  matrix	
  elements	
  

tjHi )2/cos(|| θ>=↑<↑

Anderson-­‐Hasegawa	
  calculated	
  for	
  2	
  unit	
  cells	
  

Zener	
  

H = t
1+Si•Sj

2

Maximizing	
  KE	
  drives	
  the	
  core	
  spins	
  to	
  align	
  ferromagneOcally	
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Double Perovskites 

(ABO3)(AB
�
O3)A2B !BO6

B

!B

Tunability….	
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Sr2FeMoO6

Sr2C rOsO6

o  Half-metal 
o  Ferrimagnet 
o  Tc = 420 K 

o  Mott insulator 
o  Ferrimagnet  
o  Tc = 720 K 

O.	
  Erten,	
  O.	
  N.	
  Meetei	
  et	
  al,	
  	
  
"Theory	
  of	
  half-­‐metallic	
  ferrimagneOsm	
  in	
  double	
  perovskites"	
  	
  
Phys.	
  Rev.	
  LeL.	
  107,	
  257201	
  (2011)	
  

O. N. Meetei, O. Erten et al,  
(to be submitted) 
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(c)  H = 1 kOe

RBS: Sr2Fe0.94Mo1.06O6 
XRD: a = 7.909 Å (out of plane) 
Fe/Mo Order parameter: ξ =  86% (99%)  
TC  = 380 K 
Msat  = 2.6 µB /f.u. 

Hauser et al., Phys. Rev. B 83, 014407 (2011). 

Sputter deposited Sr2FeMoO6 films 

12	
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à Itinerant electrons in t2g orbitals 

large J H ) S= 5/2
spins 

Cubic	
  crystal	
  field	
  

Quantum electrons 
+ Classical Fe Spins 

Fe	
  	
  	
  	
  	
  	
  	
  	
  	
  Mo	
  	
  	
  	
  	
  	
  	
  	
  Fe	
  	
  	
  	
  	
  	
  	
  	
  Mo	
  

Sr2FeMoO6

Fe3+ → 3d5

Mo5+ → 4d1
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Quantum electrons 
+ Classical Fe Spins 

o  el-spin anti-parallel   
   to Fe spin  
o  “double exchange”  Fe	
  	
  	
  	
  	
  	
  	
  	
  	
  Mo	
  	
  	
  	
  	
  	
  	
  	
  Fe	
  	
  	
  	
  	
  	
  	
  	
  Mo	
  



“Fast” variables: 
Itinerant electrons (“Mo”)  
à Quantum 
à  Exact  
    Diagonalization (ED) 

“ED+MC” method 

35	
  Solving the Full Hamiltonian 

* D. D. Sarma et al, PRL 85, 2549 (2000); 
* R. Mishra, O. Restrepo, W. Windl, P. Woodward,    
   Chem. Mater. 22, 6092 (2011). 

Input parameters  
consistent with DFT 

t	
  =	
  0.27	
  eV;	
  	
  	
  
tʹ′/t	
  =	
  0.1;	
  	
  Δ/t	
  =	
  2.5	
  

“Slow” variables 
Localized  
S=5/2 Fe spins 
à  Classical  
à  Monte Carlo (MC) 

S → (θ, φ)
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Half-metallic Ground State 

anObonding	
  

bonding	
  
T-dependence of DOS 



Conduction Electron Magnetism  
tied to Fe-Spin Magnetism 

37	
  

Magnetization 
Ferri-­‐	
  

magnetism 

M = Ms −Me�

Me� =
n↑ − n↓
n↑ + n↓

Polarization ( at Ef ) 

P =
N↑(0)−N↓(0)

N↑(0) + N↓(0)

• 	
  	
  
• 	
  	
  

Me� ∝ M(T)

P(T) ∝ M(T)



Conduction Electron Magnetism  
proportional to Fe-Spin Magnetism 

 
à Effective Hamiltonian for  

   classical Fe-spins  
       must describe all magnetic properties  

•  computationally & 
•  conceptually simpler 

38	
  



Generalize the 2-site 
Anderson-Hasegawa (1955) 
analysis for manganites to 
Double Perovskites 

	
  	
  	
  	
  

J 1

J 2

Exact solution for 2-unit cells 
à  Low-energy effective Hamiltonian for DP’s 

39	
  

* Different from both  
   Heisenberg and A-H  
       Hamiltonians 

* KE sets the scale of ferromagnetic exchange J1 and J2 



Validating the Effective Spin Model: 
Compare M(T) with that of the Full Model 

•  Heff  works 
 
•  NN + NNN 
  Heisenberg    
  model does not 
 
à FM exchange 
    J1 and J2 are 
    T-independent       

40	
  



41	
  

MC Calculations using Heff 
on LxLxL systems 

Magnetization M(T) and Tc 

d=3 O(3)  
universality class 

  Finite Size Scaling 

àState-of-the-art calculation    
    of Tc that includes critical  
         thermal fluctuations àTc	
  =	
  0.14t	
  

� =
|T− Tc|

Tc
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a1 > 0 a2 > 0 6Li
40K

Consider	
  the	
  case	
  when	
  interacOon	
  
Between	
  6Li	
  and	
  40K	
  are	
  repulsive,	
  	
  
depending	
  on	
  spins	
  

System:	
  	
  
40K	
  (two	
  species,	
  up	
  and	
  down)	
  	
  
MoL	
  insulator	
  in	
  a	
  deep	
  opOcal	
  laQce	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
6Li	
  (single	
  species)	
  do	
  *not*	
  see	
  opOcal	
  laQce	
  
but	
  will	
  interact	
  with	
  40K	
  up	
  and	
  40K	
  down	
  	
  
with	
  different	
  scaLering	
  lengths	
  	
  
a1	
  (Li-­‐40K	
  up)	
  and	
  a2	
  (Li-­‐	
  40K	
  down).	
  	
  
	
  



SchemaOc	
  diagrams	
   External	
  potenOal	
  seen	
  by	
  6Li	
  

π/a−π/a

−π/2a π/2a π/a−π/a

Maybe	
  localized	
  

Li	
  	
  sees	
  an	
  external	
  potenOal	
  which	
  *depends*	
  
on	
  the	
  magneOc	
  structure	
  of	
  the	
  40K	
  atoms.	
  



Ep(n, a1, a2)

Ef (n, a1, a2)

Eaf (n, a1, a2)

n=1,	
  first	
  band	
  filled	
  
Use	
  band	
  width	
  dependence	
  on	
  a1	
  and	
  a2	
  	
  
to	
  make	
  ferromagneOc	
  state	
  	
  favorable	
  
	
  (double	
  exchange	
  mechanism)	
  

n=0.5,	
  first	
  band	
  is	
  half	
  filled,	
  	
  
Use	
  gap	
  opening	
  at	
  pi/2a	
  to	
  favor	
  AF	
  

Is	
  it	
  possible	
  to	
  tune	
  the	
  filling	
  of	
  6Li,	
  the	
  scaLering	
  length	
  a1	
  and	
  a2,	
  
to	
  realize	
  either	
  F	
  or	
  AF	
  ordering	
  of	
  40K?	
  

Total	
  energy	
  of	
  system:	
  

(paramagneOc	
  background	
  of	
  spins)	
  

(ferromagneOc	
  background)	
  

(anOferro	
  background)	
  

Advantage:	
  Tc	
  scale	
  set	
  by	
  delocalized	
  Li	
  primarily	
  



Future….	
  

•  IOnerant	
  FM:	
  double	
  exchange	
  mechanism	
  in	
  
atomic	
  gases;	
  scale	
  for	
  Tc	
  set	
  by	
  Fermi	
  energy	
  

•  MulOorbital	
  MoL	
  insulators	
  
•  Doped	
  mulOorbital	
  MoL	
  insulators;	
  	
  
	
   	
   	
  novel	
  states	
  



O.	
  Nganba	
  Meetei	
  Onur	
  Erten	
  
Anamitra	
  Mukherjee	
  

	
  now	
  at:	
  UBC,	
  Vancouver	
   Patrick	
  	
  Woodward	
  

47	
  

Soon	
  Yong	
  Chang	
   Mohit	
  Randeria	
  

William	
  Cole	
   Shizhong	
  Zhang	
  


