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Ultracold ferromagnetism



in the beginning...

•	
  attractive	
  interactions	
  	
  superfluidity

•	
  repulsive	
  interactions	
  	
  magnetism

Repulsive gases (and magnetism) largely ignored in studies 
of Feshbach gases, which have focused on attractive gases.



What is the minimal set of 
ingredients for ferromagnetism?



Ultracold 
Ferromagnetism:

The good, the bad, & the ugly. 
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The	
  shepherd	
  Magnes?





Long	
  history	
  of	
  magne4sm
Greeks	
  (600	
  BC):	
  lodestone	
  attracts	
  iron
Gilbert	
  (England,	
  16	
  c.):	
  Earth	
  is	
  a	
  weak	
  magnet
Gauss	
  (Germany,	
  18	
  c.):	
  theory...
Coulomb	
  (France,	
  18	
  c.):	
  inverse	
  square	
  law
Oersted	
  (Denmark,	
  19c.):	
  connection	
  to	
  electricity
Ampere,	
  Faraday	
  (19	
  c.):	
  how	
  E-­‐fields	
  relate	
  to	
  B-­‐fields
Maxwell	
  (Scotland,	
  19	
  c.):	
  E&M	
  unification
Curie,	
  Weiss	
  (19	
  c.):	
  effect	
  of	
  T	
  on	
  magnet
Ising,	
  Heisenberg,	
  Bloch,	
  Stoner	
  (20	
  c.):	
  quantum	
  theory
Weinberg,	
  Salam	
  (20	
  c.):	
  electroweak	
  unification



Applica4ons



Eint < �ω Eint > �ω

Etot = �ω
�

ni + EintN↑N↓

solution:	
  mix	
  spins	
  to	
  
minimize	
  maximum	
  
occupied	
  level.

Basic	
  energe4cs	
  of	
  ferromagne4sm

For	
  example,	
  what	
  configuration	
  minimizes	
  energy	
  for	
  4	
  particles	
  ?	
  

solution:	
  align	
  spins	
  
(polarize)	
  to	
  minimize	
  
interaction	
  energy.

�ω

�ω

interaction	
  
strength

Eint

Total	
  energy	
  =	
  single-­‐particle	
  energy	
  +	
  interaction	
  energy	
  

Ferromagnetic	
  configuration	
  is	
  strongly	
  interacting:	
  
Interaction	
  energy	
  must	
  be	
  higher	
  than	
  single-­‐particle	
  energy.



Ingredients
that	
  we	
  find	
  in	
  ferromagne0c	
  materials

1.Fermions
-­‐unpaired	
  electrons	
  

2.Repulsive	
  interactions
-­‐Coulomb	
  repulsion

3.Lattice
-­‐structure	
  of	
  material

Necessary	
  to	
  
energetics.

Necessary?
What	
  about	
  a	
  gas?



What	
  is	
  the	
  simplest	
  condition	
  in	
  which	
  
permanent	
  magnetism	
  can	
  occur?



Condensed matter physics 
with trapped ultracold atoms 



Neutral atom Hamiltonian

• V: Inter-atomic potential is 
deep, complex, and  unique to 
each atom pair)

• U: Trapping potential not 
reminiscent of textbooks, 
where we typically worked “in  
a box” (U=0)

Ĥ =
�

dr Ψ̂†(r)
�
− �2

2m
∇2 + U(r)

�
Ψ̂(r) +

1
2

�
drdr

� Ψ̂†(r)Ψ̂†(r�)V (r − r
�)Ψ̂(r�)Ψ̂(r)

How could this Hamiltonian be 
useful to understand other systems?



R (nm)

Csinter-atomic potential,

1st simplification: low-energy limit
• Dilute atoms scatter pair-wise, because their typical spacing                      

                   is much smaller than the potential range r0

• Below 0.1mK, atom pairs do not have enough E to overcome 
the p-wave centrifugal barrier

Two-body collision

m1 m2

R

V�(R) = V (R) + �2�(� + 1)/(2µR2)

� = 1

� = 0

R = n−1/3





For elastic scattering, must be

ψ�k(�r ) = ei�k·�r − a

1 + ika

eikr

r

The scattering term has an amplitude

plane wave

+

spherical wave

“scattering amplitude”fk = −[1/a + ik]−1

S-wave (         ) scattered wave function

Only one free 
parameter! 

“scattering length” a

from which you  
find the phase k

−1/a
θ σ = 4π|f�k(�n)|2 =

4πa2

1 + k2a2
,

& cross-section

� = 0



Pseudo-potential

• Two interaction potentials V and V’ are equivalent 
if they have the same scattering length

• So: after measuring a for the real system, we can 
model with a very simple potential. 

g =
4π�2

m
a

V (�R) = gδ(�R)

V (�R)
Replace interaction 
potential with delta 
function!

where

V (�R) = gδ(�R)∂R(R ·)
• Actually, to avoid divergences you need

“regularized”



Neutral atom Hamiltonian (revisited)

Ĥ =
�

dr Ψ̂†(r)
�
− �2

2m
∇2 + U(r)

�
Ψ̂(r) +

1
2

�
drdr

� Ψ̂†(r)Ψ̂†(r�)V (r − r
�)Ψ̂(r�)Ψ̂(r)

Can write V(..) as pseudo
potential:

in limit of dilute (            ) 
and ultracold (                  ).

V (�R) = gδ(�R)∂R(R ·)

R� r0

T � 100µK



Neutral atom Hamiltonian (revisited)

Ĥ =
�

dr Ψ̂†(r)
�
− �2

2m
∇2 + U(r)

�
Ψ̂(r) +

1
2

�
drdr

� Ψ̂†(r)Ψ̂†(r�)V (r − r
�)Ψ̂(r�)Ψ̂(r)

What about the trap?

Can write V(..) as pseudo
potential:

V (�R) = gδ(�R)∂R(R ·)

in limit of dilute (            ) 
and ultracold (                  ).

R� r0

T � 100µK



• What if a cold gas were a distribution of local 
creatures?

2nd simplification: Local chemical potential

snake line of ants

{scare the ant at the front of the line, 
and the last ant won’t rattle its tail...}

• Recipe:

µ −→ µlocal = µ− U(�r)



Local chemical potential: 
“how to use your Stat. Mech. textbook”

• Thomas Fermi density profiles:

• ideal quantum gas functions:

• Similar Thomas Fermi expression for bosons:

n =
1

6π2

�
2mEF

�2

�3/2

nTF =
(2m)3/2

6π2�3
[EF − U(�r)]3/2

n = λ−3
T f3/2(z)

z = eβµ −→ z = eβ(µ−U(�r))

for zero-temperature fermions in semiclassical limit.

at finite temperature (                   ), where z=fugacity.β = 1/kBT

nTF =
1
g

[µ− U(�r)]µ = gn

textbook local µ

textbook local µ

textbook local µ

µlocal = µ− U(�r)



Validity of local chemical potential
• A “local density approximation” (LDA).

• Not a good approximation when:
-tunneling can occur through barriers
-long-range order affected (eg, phase coherence)
-gradients perturb states (eg, localized states)
-long-range interactions (Coulomb etc)

• In those cases, model must include trapping potential.

• However in some important cases works well: 
-important length scales (eg, Fermi length or lattice 
constant) much smaller than trap size
-Far from edges, compared to healing length   :

ξ = 1/
√

8πna
�2

2mξ2
= gn

ξ

such that



Cold neutral gases: length scales
• inter-atomic potential range, r0: 2 nm

•

• thermal de Broglie wavelength: 100 nm

• average inter-particle spacing: 100 nm
-same length scale as 1/kF

• lattice constant: 400 nm

• ground state width: 
1µm @ 100Hz (typ. magnetic trap)
100nm @ 10kHz (single site of optical lattice)

• cloud size: 1-100 µm

Quantum
degeneracy

Effective Hamiltonian

• scattering length, a
-low-field (background) 5 nm
-near a Feshbach resonance 100 nm to 1000 nm



Cold neutral gases: length scales (in traps)
• inter-atomic potential range, r0: 2 nm

•

• thermal de Broglie wavelength: 100 nm

• average inter-particle spacing: 100 nm
-same length scale as 1/kF

• ground state width: 
1µm @ 100Hz (typ. magnetic trap)

• cloud size: 1-100 µm

• scattering length, a
-low-field (background) 5 nm
-near a Feshbach resonance 100 nm to 1000 nm

Effective Hamiltonian



Physics in local µ picture:
en

er
gy

position

U(r)

de
ns

ity

µ

position

uniform H, simulated 
with local µ & T.

bosons (for single component):

fermions (for 2-component gas):

Ĥ =
�

σ

Ψ̂†
σ

�
− �2

2m
∇2

�
Ψ̂σ + g n̂↑n̂↓

Ĥ = Ψ̂†
�
− �2

2m
∇2

�
Ψ̂ +

g

2
n̂

2



Example: Standard model physics

Why use gases to study CM physics?

10-10 m

atom

10-15 m

proton

<10-18 m

?
quark structure?

Theories effective at each length scale.

Atomic
Physics

Quantum
Chromodynamics

(string 
theory?)

A: Separation of length scales



Effectively
point particles!

A: Separation of length scales
Why use gases to study CM physics?

Dilute neutral gases:

100 nm

0.5 nm

Interaction potential

In contrast to solids & liquids, where 
interactions depend on details: chemistry. n−1/3 � 1nm1 nm



confinement neutral gas finite range

r0: 1 nm100 nmR: µm

Why use gases to study CM physics?



confinement ultracold atoms finite range

r0: 1 nm: 100 nmR: µm

SIMULATION SPACE

2. de Broglie wavelength:

when quantum degenerate

1. inter-particle distance

3. scattering length:
 interaction strength g =

4π�
m

aS
aS

d

λdB � d

...where Hamiltonians are generic!

fermions (particles with half-integer spin):

Ĥ =
�

σ

Ψ̂†
σ

�
− �2

2m
∇2

�
Ψ̂σ + g n̂↑n̂↓

Ĥ = Ψ̂†
�
− �2

2m
∇2

�
Ψ̂ +

g

2
n̂

2

bosons (particles with integer spin):

“Let’s simulate!”

Why use gases to study CM physics?



Spinful Fermi gases



Perturbative treatment
Energy of repulsive gas:
Universal to second order (ind. of details of short-range int.)

f(x) =
1

2
(η5↑ + η5↓) +

10kFa

9π
η3↑η

3
↓ +

(kFa)2

21π2
ξ(η↑, η↓)

ξ = 22η3↑η
3
↓(η↑ + η↓)− 4η7↑ln

η↑ + η↓
η↑

− 4η7↓ln
η↑ + η↓

η↓

+
1

2
(η↑ − η↓)

2η↑η↓(η↑ + η↓)[15(η
2
↑ + η2↓) + 11η↑η↓]

+
7

4
(η↑ − η↓)

4(η↑ + η↓)(η
2
↑ + η2↓ + 3η↑η↓)ln

����
η↑ − η↓
η↑ + η↓

����.

where                          and [Kanno, 1970]:

ideal gas mean field beyond mean field

E =
3

5
EF f(x)



Perturbative treatment
Energy of repulsive gas:
Universal to second order (ind. of details of short-range int.)

f(x) =
1

2
(η5↑ + η5↓) +

10kFa

9π
η3↑η

3
↓ +

(kFa)2

21π2
ξ(η↑, η↓)

ideal gas mean field beyond mean field

Check balanced (x=0) limit:

f(x) = 1 +
10

9π
kFa+

4(11− 2 ln 2)

21π2
(kFa)

2

.K. Huang and C.N. Yang, Phys. Rev. 105, 767 (1957);
T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).✓  
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Order of phase 
transition?

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6
1.552

1.554

1.556

1.558

1.560

Polarization

�Dime
ns
io
nl
es
s�Ene

rg
y

2nd order
mean field:

�0.5 0.0 0.5

1.578

1.579

1.580

1.581

Polarization

�Dime
ns
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nl
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s�Ene

rg
y

1st order
including (kFa)2:

jump
kFa=1.052

kFa=1.055

kFa=1.058

kFa=1.56

kFa=1.57

kFa=1.58



Spontaneous polarization: 
Ferromagnetic phase transition 

Polarization vs. Interaction strength

(uniform gas, T=0, perturbation theory)

O(kFa)

O(kFa)2

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

kFa

Po
la
riz
at
io
n

π/2



Ferromagnetism
(uniform gas, finite temperature, 2nd-order treatment)

Duine	
  &	
  MacDonald,	
  PRL	
  95,	
  230403	
  (2005).

T=0 0.25TF
0.1TF

0.2TF



What about conservation laws?

• Trapped clouds are isolated. Should they be 
considered micro-canonical? 

• Quantum statistical distributions valid for grand 
canonical ensemble (thermal & diffusive eq):

• Is the system free to choose lowest energy spin 
configuration?

nFD =
1

e(�−µ)/kBT + 1
nBE =

1

e(�−µ)/kBT − 1



spin:	
  metals	
  vs.	
  atoms
metals	
  	
  electron	
  spin:

• parallel	
  or	
  antiparallel	
  to	
  magnetic	
  field

• spin	
  flips	
  allowed	
  through	
  interactions	
  with	
  the	
  
lattice

atoms	
  	
  atomic	
  substructure

• any	
  two	
  Zeeman	
  sublevels	
  are	
  valid	
  “spins”

• spin	
  must	
  be	
  conserved	
  =	
  no	
  spin	
  flips

B

F	
  =	
  7/2

F	
  =	
  9/2

mF	
  =	
  -­‐7/2

mF	
  =	
  -­‐9/2



spin:	
  atoms

π / 2	
  pulse

superposition	
  states
• maintain	
  (controllable)	
  interactions	
  between	
  the	
  two	
  states

• spin	
  flips	
  are	
  now	
  allowed

• any	
  orthogonal	
  superpositions	
  of	
  Zeeman	
  sublevels	
  are	
  also	
  valid	
  as	
  
pseudospin	
  states:



•  T and µ-V(r) are both in equilibrium 
with neighboring elements. 

• Energy, number, and total angular 
momentum exchanged.

• Thermodynamic identities:

What about conservation laws?

Each volume element can 
be thought of a “system.”

en
er

gy

position

U(r)

de
ns

ity

µ

position

Local density picture:



Spin	
  textures
• Spin	
  conserved	
  only	
  globally
• Approach	
  here:	
  minimization	
  of	
  mean	
  field	
  energy	
  functional

•Magnetization	
  is	
  treated	
  (properly)	
  as	
  a	
  vector	
  quantity.

• Include	
  gradient	
  terms:	
  beyond	
  LDA

“Hedgehog”

“Domain	
  wall”

LeBlanc,	
  Thywissen,	
  Burkov,	
  &	
  Paramekanti	
  PRA	
  80,	
  013607	
  (2009).



Energy functional (in LDA)

Fermions:

E =
�

d3R

�
3
5
α

�

σ

ρ5/3
σ + gρ↑ρ↓ + V

�

σ

ρσ −
�

σ

µσρσ

�

E =
�

d3R
�
6
5
αρ5/3 + gρ2 + 2V ρ− 2µρ

�
...or for equal populations everywhere:

A “first pass” at weakly interacting Fermions

(fixes 
number)



Mean field variational solution

�1.0 �0.5 0.0 0.5 1.0
0.0
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0.8

1.0

radius r�R_�TF�

D
en
sit
y

with a>0

a=0

Thomas-Fermi ansatz: n(r) = n0(1− r2/R2)3/2



Variational soln: example of minimization 

@kFa=1

��

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

cloud radius: R

m
ea
n
fi
el
d
en
er
g
y
:
Ε�
E
�E F total 

PE 

KE 

IE 

ε = A/R2 + B(k0
F aS)/R3 + AR2 − 1



TF ansatz vs. numerical minimization 

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �
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interaction strength: kF0aS
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Radius of TF ansatz soln

�1 0 1 2 3 4
0.7

0.8

0.9

1.0

1.1
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interaction strength: kF0aS

m
ea
n
fie
ld
ra
di
us
:R

collapse!

H. Stoof et al, PRL 76, 10 (1996); PRA 56, 4864 (1997)

Realized in 1996. Can a cold atom superfluid be stable?



(recall collapse in attractive BECs:)

size

en
er

gy

Hulet, Stoof:

Castin, Pethick
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E�3E F

21/3 ≈ 1.26

Interaction
quenched

equal	
  again
(SHO	
  virial)

3.5

Now allow spin degree of freedom

Ferromagnetic instability for repulsive gases.

E =
�

d3R

�
3
5
α

�

σ

ρ5/3
σ + gρ↑ρ↓ + V

�

σ

ρσ −
�

σ

µσρσ

�



Strong interactions



Feshbach resonances

How can we tune the scattering length a?

We can tune a molecular bound state into resonance with the free 
atoms, and affect net phase acquired during the collision. 

Result is indistinguishable from tuning the single-channel 
square well: it’s only the phase that matters.



Tune the square well 
potential & calculate a: V

b

Rpo
te

nt
ia

l

0 2 4 6 8 10
�2

�1

0

1

2

3

b V

a�R

2. Mostly a>0. 
Near a resonance 
when a<0 (eg, Li.)

bV = (n + 1/2)π
1. Resonances at

when each new bound 
state appears.

We find:

Feshbach resonances
single-channel model



Example: 6Li

Feshbach resonances

a(B) = abg

�
1− ∆

B −B0

�

Near resonance the scattering 
length can be described as

Eb =
�2

2µa2

For a>0, a bound state exists 
with binding energy

σ0 =
4π

k2
sin2 η0

s-wave cross section is 



Tuning the simulation

Trapped atom clouds:

stronger
interaction

“g”



Tuning the simulation

in
te

ra
ct

io
n 

st
re

ng
th

 “
g”



You may be more familiar with the resonant atom-photon cross 
section (which has different constants because it is a vector 
instead of scalar field):

Unitarity

Near a Feshbach resonance, |a| diverges. The scattering cross 
section departs from its low-ka form:

σ =
4πa2

1 + k2a2
→ 4π

k2

σres = λ2
dB/π

σres =
3
2π

λ2
L

This is just a manifestation of the optical theorem, which says that 
complete reflection corresponds to a finite scattering length. In 
terms of the de Broglie wavelength, 

3.3



Unitarity

For a many-body system, resonant interactions also saturate but 
are less easy to quantify. Certainly it is the case that a divergent a 
can no longer be a relevant physical quantity to the problem.

where                 has been measured in various experiments.

For fermions, the only remaining length scale is         .k−1
F

This means that interaction energies must scale with the Fermi E. 
In particular, for resonant attractive interactions, 

µLocal = (1 + β)�F

β ≈ −0.58

µU =
�

1 + βEF

≈ 0.65EF

for                  a→ −∞

Using the LDA to integrate over the profile, we find

3.3



where                 has been measured in various experiments. 
Using the LDA to integrate over the profile, we find

Unitarity

For a many-body system, resonant interactions also saturate but 
are less easy to quantify. Certainly it is the case that a divergent a 
can no longer be a relevant physical quantity to the problem.

For fermions, the only remaining length scale is         .k−1
F

This means that interaction energies must scale with the Fermi E. 
In particular, for resonant attractive interactions, 

µLocal = (1 + β)�F

β ≈ −0.58

µU =
�

1 + βEF

≈ 0.65EF

for                  a→ −∞

Saved by unitarity!

unitarity limit

mf TF ansatz
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Length scales (in traps, @Feshbach res.)
• inter-atomic potential range, r0: 2 nm

• thermal de Broglie wavelength: 100 nm

• average inter-particle spacing: 100 nm
-same length scale as 1/kF

• scattering length, a
-at Feshbach resonance: divergent

• ground state width: 
1µm @ 100Hz (typ. magnetic trap)

• cloud size: 1-100 µm



Length scales (in traps, @Feshbach, T=0)
• inter-atomic potential range, r0: 2 nm

• average inter-particle spacing: 100 nm
-same length scale as 1/kF

• scattering length, a
-at Feshbach resonance: divergent

• ground state width: 
1µm @ 100Hz (typ. magnetic trap)

• cloud size: 1-100 µm

Only one length scale left in the problem! “Universal”



Tan’s relations

1. Adiabatic sweep theorem

2. Generalized Virial theorem

2π
dE

d[−1/(kFa)]
= C

E − 2V = T + I − V = − C

4πkFa

Define the “contact”, an unknown parameter (to be measured):



Tan’s relations
Measure the contact:

C = lim
k→∞

k4n(k)

J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, 
Phys. Rev. Lett. 104, 235301 (2010)



Tan’s relations
Adiabatic sweep theorem:

2π
dE

d[−1/(kFa)]
= C

J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, 
Phys. Rev. Lett. 104, 235301 (2010)



Tan’s relations
T + I − V = − C

4πkFa
Generalized Virial theorem

J. T. Stew
art, J. P. G

aebler, T. E. D
rake, and D

. S. Jin, 
Phys. Rev. Lett. 1

0
4

, 235301 (2010)



How	
  could	
  the	
  Stoner	
  model	
  fail?
At	
  some	
  point,	
  shouldn’t	
  interactions	
  be	
  strong	
  enough	
  
to	
  make	
  spin	
  alignment	
  energetically	
  favourable?

Unfortunately	
  interactions	
  can	
  only	
  be	
  so	
  strong.

Recall	
  scattering	
  theory:

σ0 =
4π

k2
sin2 δ0(k)

f�k = −[1/a + ik]−1

σ0 =
4πa2

1 + a2k2
→ 4π

k2

k = 2π/λdB

Cross-­‐section

Contact	
  potential:

“Unitarity	
  limit:”	
  Can’t	
  do	
  more	
  than	
  reflect	
  back.	
  
In	
  fact,	
  resonant	
  scattering	
  of	
  a	
  wave	
  always	
  has	
  a	
  
cross-­‐section	
  of	
  lambda	
  squared!



Effect	
  of	
  a	
  laBce

Why	
  would	
  a	
  lattice	
  favour	
  FM?
-­‐flattens	
  bands,	
  lowering	
  EF

Proofs	
  of	
  FM	
  involving	
  a	
  lattice

See,	
  for	
  example:	
  H.	
  Tasaki,	
  Prog	
  Theor.	
  Phys.	
  99,	
  489	
  (1998)



For	
  every	
  problem,	
  there	
  is	
  a	
  
simple,	
  elegant	
  solu4on....	
  

Nowhere	
  is	
  this	
  more	
  true	
  than	
  in	
  CM	
  physics!
Stoner	
  model	
  does	
  not	
  lead	
  to	
  FM	
  in	
  one	
  dimension	
  (1D)
-­‐Lieb	
  (1962)

No	
  proof	
  to	
  date	
  about	
  2D or 3D

...which	
  is	
  wrong.



Polaron energy
• Wavefunction for a single flipped spin:

Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases.
Xiaoling Cui and Hui Zhai, Phys. Rev. A 81 (4) 041602 (2010)

Yes, FM stable
for kFa>2.4



Zwerger’s proof

• Construct a variational wavefunction for a fully 
mixed state

• Want to compare its energy Evar with energy of 
ideal fermi gas EF, whose wavefunction is:

• However know that fermionized Bose gas, with 
same spatial wf, has energy ETonks. 

M. Barth and W. Zwerger, arXiv: 1101.5594 (2011)
“Tan Relations in One Dimension”

No FM in upper branch.

�{z�}|Ψvar� = |detφ�({z�})| |S = 0�

�{z�}|Ψ(F )� = detφ�({z�})|S = N/2�

3D: F. Zhou (UBC)Emix ≤ Evar = ETonks = 0.8EDFG < Epol

1D: Lieb & MatthisEmix ≤ Evar = ETonks = EDFG = Epol



Quantum Monte Carlo

S. Pilati, G
. Bertaina, S. G

iorgini, and M
. 

Troyer, Phys. Rev. Lett. 1
0
5

, 030405 (2010)
S.-Y. C

hang, M
. R

anderia, N
. 

Trivedi, PN
A

S 1
0
8

, 51 (2011)

S. Q
. Z

hou, D
. M

. C
eperley, and S. 

Z
hang, Phys. R

ev. A
 8
4

, 013625 (2011)

Yes, FM in upper branch.



Non-perturbative field theory
Lianyi He and Xu-Guang Huang, “Non-Perturbative Prediction of the Ferromagnetic 
Transition in Repulsive Fermi Gases.” [arXiv:1106.1345v2]

Yes, FM in upper branch
(for kFa>0.9)



Nozieres-Schmidt-Rink
The Nature and Properties of a Repulsive Fermi Gas in the "Upper Branch"
Vijay B. Shenoy, Tin-Lun Ho, Phys. Rev. Lett. 107, 210401 (2011)

How to explain a deviation from Tan’s relations?

No FM in upper branch.



Dynamics & instabilities



Experiment?
• ENS Paris 2003:

T=0.6TF
6Li

 

• Generally: problem is 3-body loss near Feshbach 
resonance, on repulsive side.
-short lifetime
-adiabaticity difficult
-situation complicated by molecules



Experimental
Observa4ons

G B Jo, Y. R. Lee, J. H. Choi, C. Christiensen, H. Kim, J. H. Thywissen, 
D. Pritchard, W. Ketterle, Science 325, 1521 (2009) 3.5

ferromagnetism!



Mean	
  field	
  energe0cs

kFa

E
/E

id
ea

l



C. Sanner, E. J. Su, W. Huang, A. Keshet, J. Gillen, and W. Ketterle, arXiv: 1108.2017

No	
  divergence	
  
in	
  magne4c	
  
suscep4bility.

-> No FM.



Competitive instabilities
Pekker...Demler: “Competition between pairing and ferromagnetic instabilities in 

ultracold Fermi gases near Feshbach resonances” Phys. Rev. Lett. 106, 050402 (2011)
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C. Sanner, E. J. Su, W. Huang, A. Keshet, J. Gillen, and W. Ketterle, arXiv: 
1108.2017

Fast	
  molecular	
  loss	
  observed.

“The fast formation of molecules and the accompanying 
heating makes it impossible to study such a gas in 
equilibrium [...] Therefore, Nature does not realize a 
stronglyrepulsive Fermi gas with short range interaction, and 
the widely used Stoner model is unphysical.”



The Nature and Properties of a Repulsive Fermi Gas in the "Upper Branch"
Vijay B. Shenoy, Tin-Lun Ho, Phys. Rev. Lett. 107, 210401 (2011)
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BEC-BCS crossover

sweep B

Attractive gas:
BCS superfluid

Resonant 
superfluid

Molecular BEC

3.4



Strongly repulsive Fermi gas

Repulsive gas:
Ferromagnet?

sweep B

3.5



sweep B

Strongly repulsive Fermi gas

Repulsive gas:
Ferromagnet?

or just molecular 
decay?

3.5



Dynamics essential to understand
-Metastability of ferromagnetic state is weak
-might dynamics give us a clue to equilibrium physics?
-breakdown of “effective Hamiltonian”
-connections to spintronics & transport

Controversy in theoretical analysis of ferromagnetism
-controversy continues in 2011
-few meaningful experimental results

Routes to increased stability?
-lower dimensionality
-weak lattice
-spin imbalance

More questions than answers! Oldest discussion in 
condensed matter physics continues.

Conclusions

?
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