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Ultracold atoms: spin orbit coupling and engineered interactions



Ian’s answer I: “chunks of stuff.”

What are materials?

Aerogel
1 mg/cm3

Si
2.3 g/cm3

Liquid Helium
125 mg/cm3



Ultracold neutral atoms
~1014 cm-3 or 100 ng/cm3

(air is ~1 mg/cm3)

Are these materials?



They can be insulators

They can be fluids

We associate images with non-negligible f as being in the
SF phase [19]. We emphasize that superfluidity is a trans-
port phenomena and cannot unambiguously be associated
with features in the momentum distribution [10,11,20].
This association is also imperfect at T > 0 because in 2D
trapped systems we expect a discernible condensate frac-
tion even after the vortex pairs of a BKT SF unbind [21],
destroying the 2D SF. f vanishes only when the resulting
phase-fluctuating quasicondensate vanishes [13,22].

To characterize the transition from SF to normal, we
extract two independent quantities from TOF images: f,
and an ‘‘energy scale’’ !. We also measure a related
quantity, the full width at half maximum (FWHM) ! of
the quasimomentum distribution, which we compare to
theory. As the lattice depth is increased f vanishes con-
currently with a sudden increase in !, abrupt signatures
that we associate with the transition.

We produce nearly pure 3D 87Rb BECs with NT !
1:2"4# $ 105 atoms in the jF ! 1; mF ! %1i state [2]. A
pair of linearly polarized, " ! 820 nm laser beams forms a
30"2#ER deep vertical optical lattice along ẑ that divides
the 3D BEC into about 70 2D systems (turn-on time !
200 ms). The single photon recoil wave vector and energy
are kR ! 2#=" and ER ! @2k2R=2m ! h$ 3:4 kHz; m is
the atomic mass and h is Planck’s constant. The largest 2D
system, containing & 3000 atoms, has a chemical poten-
tial $2D ! h$ 600"100# Hz and we measure a tempera-
ture kBT ! kB $ 33"4# nK ! h$ 700"70# Hz. Since the

first vibrational spacing h$ 33"1# kHz ' $2D, kBT, this
system is well into the 2D regime. In addition, a weaker,
square 2D lattice in the x̂-ŷ plane is produced by a second
beam arranged in a folded-retroreflected configuration
[23], linearly polarized in the x̂-ŷ plane (turn-on time !
100 ms [24]). The intensities of both lattices follow ex-
ponentially increasing ramps, with 50 and 25 ms time
constants, respectively, and reach their peak values con-
currently. These time scales are chosen to be adiabatic with
respect to mean-field interactions, vibrational excitations,
and tunneling within each 2D system. The final depth of
the x̂-ŷ lattice determines U=t and ranges from V ! 0 to
25"2#ER [25]. The lattice depths are calibrated by pulsing
the lattice for 3 $s and observing the resulting atom dif-
fraction [26].

We calculate U=t using a 2D band-stucture model and
the s-wave scattering length [27]. The (10% uncertainty
in U=t stems from the uncertainty in lattice depth [28].

Once both lattices are at their final intensity, the system
consists of an array of 2D gases each in a square lattice of
depth V with a typical density of 1 atom per lattice site. The
atoms are held for 30 ms, and all confining potentials are
abruptly removed (the lattice and magnetic potentials turn
off in & 1 $s and ’ 300 $s, respectively). Initially con-
fined states are projected onto free particle states which
expand for a 20.1 ms TOF [29], when they are detected by
resonant absorption imaging. Apart from effects of atomic
interactions during expansion and the initial size of the
sample, initial momentum maps into final position, so each
image approximates the x̂-ŷ projection of the momentum
distribution. We fit each momentum distribution to a sim-
ple function which describes the distributions over the full
range of U=t studied here, with just three free parameters.

First, we model the broad background as a thermal
distribution of noninteracting classical particles in a 2D
sinusoidal band with states labeled by quasimomentum qx
and qy, n"qx; qy# / exp)2"cos#qx=kR * cos#qx=kR#=!+;
this contributes two fitting parameters: ! and the non-
condensed atom number. In the shallow lattice limit, !
gives the temperature, ! ! kBT=t. This fit does not dis-
tinguish atoms thermally occupying higher momentum
states from atoms occupying these states in the ground
state wave function, i.e., from the quantum depletion of
the SF. n"qx; qy# multiplied by a suitable Wannier function
correctly describes the momentum distribution of atoms in
the MI phase to first order in t=U where ! ! U=4t is
unconnected to temperature. Our function fits the random
phase approximation (RPA) momentum distribution fairly
well even as higher order terms become important [2,30].

The second portion of the momentum distribution con-
sists of a narrow peak, which we interpret as Bose-
condensed atoms. We take the narrow peak to be the
inverted parabola of a Thomas-Fermi profile (of fixed
width for all comparable data [31]), characterized by a
single fitting parameter, condensed number.

The observed condensate peak width after TOF stems
largely from initial system size, not interaction effects
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FIG. 1 (color). Momentum distributions and cross sections at
U=t ! 4"1#, 8(1), and 20(2). Each row shows a single momen-
tum distribution normalized by the total atom number; the lines
in the top right panel indicate trajectories along which four cross
sections were taken. The left panel shows the average of these
four sections (black solid line); the red dashed lines denote the fit
to the bimodal distribution.
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They can be fermionsThey can be bosons

e.g., Regal Nature (2003)

They can be atomsThey can be molecules



They can be 2DThey can be 3D They can be 1D
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)

NATURE|Vol 440|13 April 2006 LETTERS

901

e.g., Kinoshita Nature (2006)

©!2006!Nature Publishing Group!

!

function of Lx at a low and a high temperature, along with the fits by a
power-law decaying function.
Figure 3b summarizes the fitted values of the exponent a in

different temperature regimes, and constitutes the first main result
of this Letter. Starting at high temperatures, for values of c0 up to
about 13%, a is approximately constant and close to 0.5. When the
temperature is reduced further,a rapidly drops to about 0.25, and for
even lower temperatures (larger c0) it levels off. We thus clearly
observe a transition between two qualitatively different regimes at
high and low temperatures. The values of a above and below the
transition are in agreement with the theoretically expected jump in
the superfluid density at the BKT transition in a uniform system.
However, this quantitative agreement might be partly fortuitous.
Even though we concentrated on the quasi-uniform part of the
images, the geometrical effects in our elongated samples could still be
important. Ultimately, at extremely low temperature, a should
slowly tend to zero and the gas should become a pure, fully coherent
Bose–Einstein condensate. We could not reach this regime in the
present experiments owing to the residual heating discussed above.
Even without precise thermometry, we can estimate the cloud’s

temperature and density at the onset of quasi-long-range coherence.
For images with c0 ¼ 0.15, the temperature inferred from the wings
of the atom distribution after TOF is 290 ^ 40 nK, corresponding to
a thermal wavelength of l ¼ 0.3 mm. From the length of the quasi-
condensate we deduce the number of condensed atoms
NC ¼ 11,000 ^ 3,000, and the peak condensate density (in the
trap centre) rC ¼ (5 ^ 1) £ 109 cm22. This gives rCl

2 ¼ 6 ^ 2.
BKT theory for a uniform system predicts the transition at

rSl
2 ¼ 4, where rS is the superfluid density. The two values are in

fair agreement, but we note that the exact relation between rC and rS

in 2D atomic gases will require further experimental and theoretical
investigation. For example, our observation of a < 0.5 for a finite
value of c0 suggests that the superfluid density rS might be zero even
if the condensate density rC is finite.
The key role in the microscopic BKT theory is played by vortices,

localized topological defects in the phase of the condensate. In
contrast to the smooth variation of the fringe phase J(x) created
by long-wavelength phonons (Fig. 1d), a free vortex in one of the
condensates should appear as a sharp dislocation in the interference
pattern16,24, with J(x) changing abruptly across a dislocation line
parallel to the expansion axis z. We indeed occasionally observe such
dislocations. Examples of images containing one and several disloca-
tions are shown in Fig. 4a and b, respectively. The tightly bound
vortex–antivortex pairs are not detectable in our experiments
because they create only infinitesimal phase slips in the interference
pattern. Other phase configurations which could mimic the appear-
ance of a vortex, such as a dark soliton aligned with the imaging
direction, can be discarded on theoretical grounds24.
Figure 4c shows the frequency with which we detect sharp

dislocations at different temperatures. For the count we consider
only the central, 30-mm-wide region of each image, which is smaller
than the length of our smallest quasi-condensates. We note that we
detect only a subset of vortices—those that are well isolated and close
to the centre of the cloud. We also note that thermally activated
phonon modes with a very short wavelength along x can in principle
contribute to the count. Their contribution is expected to be non-
negligible only at the highest temperatures, at which a detailed
theoretical analysis would be needed to separate their effect from
that of the vortices.
The observed sudden onset of vortex proliferation with increasing

temperature constitutes the second main result of this Letter. Further,
this onset coincides with the loss of quasi-long-range coherence
(Fig. 3b). These two observations together provide conclusive evidence
for the observation of the BKT crossover in this system.

Figure 3 | Emergence of quasi-long-range order in a 2D gas. a, Examples of
average integrated interference contrasts kC̃2(Lx)l are shown for a low (blue
circles, c0 ¼ 0.24) and a high (red squares, c0 ¼ 0.13) temperature; Lx is the
integration length. The lines are fits to the data by the power-law function
1/(Lx)

2a, and give a ¼ 0.29 ^ 0.01 (low temperature) and a ¼ 0.46 ^ 0.01
(high temperature). The fitting range, indicated by the solid part of the line,
is constrained by the conditions Lx .. Ly on the left and cx . c0/2 on the
right. b, Decay exponent a as a function of c0. Dashed lines indicate the
theoretically expected values of a above and below the BKT transition in a
uniform system. Error bars indicate the standard deviation of the results
from different experimental runs.

Figure 4 | Proliferation of free vortices at high temperature. a, Example of
an interference pattern showing a sharp dislocation that we attribute to the
presence of a free vortex in one of the interfering clouds. b, Interference
pattern showing several dislocations. c, Fraction of images showing at least
one dislocation in the central, 30-mm-wide region, plotted as a function of c0.
The error bars show the statistical uncertainty, given by the square root of
the number of images with dislocations. Inset, histogram of the phase
jumps DJ i ¼ jJ(x i) 2 f(x iþ1)j between adjacent CCD pixel columns, for
the set of images in the bin c0 ¼ 0.08. An image is counted as showing a
dislocation if at least one of theDJ i exceeds 2p/3 (threshold indicated by the
dashed line). The distance between adjacent columns is 2.7 mm and the
count runs over the 10 central columns. There are 97 images contributing to
this histogram, hence 970 counts, among which 16 counts (corresponding to
13 different images) exceed the threshold.
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Ian’s answer: “stuff”
In a finite volume of space

Have “mechanical properties”

Or “fluid properties”

Cold atoms are: good materials
Numerous properties can 

be controlled on many timescales

Very simple Hamiltonian

Cold atoms are: bad materials
Short lived

Interesting features all added
by hand (complex experiments).

What are materials?
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Figure 2 | Experimental setup for synthetic electric fields. a, Physical
implementation indicating the two Raman laser beams incident on the BEC

(red arrows) and the physical bias magnetic field B0 (black arrow). The

blue arrow indicates the direction of the synthetic electric field E∗
. b, The

threemF levels of the F= 1 ground-state manifold are shown as coupled by

the Raman beams. c, Dressed-state eigenenergies as a function of

canonical momentum for the realized coupling strength of h̄�R = 10.5 EL at
a representative detuning h̄δ = −1 EL (coloured curves). The grey curves

show the energies of the uncoupled states, and the red curve depicts the

lowest-energy dressed state in which we load the BEC. The black arrow

indicates the dressed BEC’s canonical momentum pcan = q∗A∗
, where A∗

is

the vector potential. d, Measured vector potential from the

canonical momentum.

electric field E∗ = −∂A∗/∂t , and the dressed BEC responds as1

d(m∗v)/dt = −∇φ(r)+q∗E∗, where v is the velocity of the dressed2

atoms andm∗v=pcan−q∗A∗. Here,�(m∗v)=−q∗(Af
∗ −Ai

∗) is the3

momentum imparted by q∗E∗.4

We study the physical consequences of sudden temporal changes5

of the effective vector potential for the dressed BEC. These changes6

are always adiabatic such that the BEC remains in the same7

dressed state. We measure the resulting change of the BEC’s8

momentum, which is in complete quantitative agreement with our9

calculations and constitutes the first observation of synthetic electric10

fields for neutral atoms.11

Our system (see Fig. 2a) consists of an F =1 87RbBECwith about12

1.4×105 atoms initially at rest15,16; a small physical magnetic field13

B0 Zeeman-shifts each of the spin states mF = 0,±1 by E0,±1. Here,14

B0 ≈ 3.3×10−4 T and E−1 ≈ −E+1 ≈ gµBB0 � |E0|. The linear and15

quadratic Zeeman shifts are h̄ωZ = (E−1 −E+1)/2≈ h×2.32 MHz16

and−h̄� =E0−(E−1+E+1)/2≈−h×784 Hz. A pair of λ=801 nm17

laser beams, intersecting at 90◦ at the BEC, couples the mF states18

with strength �R. These Raman lasers differ in frequency by19

�ωL ≈ωZ andwe define the Raman detuning as δ=�ωL−ωZ. Here20

h̄�R ≈ 10 EL and |h̄δ|< 60 EL, where EL = h̄2kL2/2m= h×3.57 kHz21

and kL =
√
2π/λ are natural units of energy andmomentum.22

When the atoms are rapidly moving or the Raman lasers are23

far from resonance (kLv or δ � �R), the lasers hardly affect the24

atoms. However, for slowly moving and nearlyresonant atoms the25

three uncoupled states transform into three new dressed states.26

The spin and linear-momentum state |kx ,mF = 0� is coupled to27

states |kx − 2kL,mF = +1� and |kx + 2kL,mF = −1�, where h̄kx is28

the momentum of |mF = 0� along x̂ , and 2h̄kLx̂ is the momentum29
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difference between the two Raman beams. For each kx , the three 30

dressed states are the energy eigenstates in the presence of Raman 31

coupling h̄�R (see ref. 2), with energies Ej(kx) shown in Fig. 2c 32

(grey for uncoupled states, coloured for dressed states); we focus on 33

atoms in the lowest-energy dressed state. Here the atoms’ energy 34

(interaction and kinetic) is small compared with the≈ 10 EL energy 35

difference between the curves; therefore, the atoms remain within 36
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Current experiments with Bosons
Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)

Spin orbit coupling of pseudo spin-1/2 atoms

Refs. 
Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)

Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010),  J. Alicea et al, N. Physics (2011)
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in

the limit µ=0, t= |�|. Each spinless fermion in the chain is decomposed in

terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy

end Majoranas γA,1 and γB,N as shown
23
. b, A spin–orbit-coupled

semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana

modes by applying an external magnetic field
21,22

. c, Band structure of the

semiconducting wire when B=0 (dashed lines) and B �=0 (solid lines).

When µ lies in the band gap generated by the field, pairing inherited from

the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = −it

N−1�

x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1 + iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend

†|0�,
where dend|0�=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
�

dx
�
ψx

†

�
− h̄

2∂x
2

2m
−µ− ih̄uê ·σ∂x

− gµBBz

2
σ z

�
ψx + (|�|eiϕψ↓xψ↑x +h.c .)

�
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = � = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on �
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |�|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |�| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu

2, |�| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey + iex)/gµB|Bz |)∂x�x and
ψ↓x ∼ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ∼
�

dx
�
�x

†

�
− h̄

2∂x
2

2m
−µeff

�
�x

+
�
|�eff|eiϕeff�x∂x�x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|�eff|eiϕeff ≈ u|�|
gµB|Bz |

eiϕ(ey + iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
−

�
|�|2 +µ2

����

For |µ|<µc =
√
(gµBBz/2)2 − |�|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|�|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Spin–orbit-coupled Bose–Einstein condensates
Y.-J. Lin1, K. Jiménez-Garcı́a1,2 & I. B. Spielman1

Spin–orbit (SO) coupling—the interaction between a quantum
particle’s spin and its momentum—is ubiquitous in physical sys-
tems. In condensed matter systems, SO coupling is crucial for the
spin-Hall effect1,2 and topological insulators3–5; it contributes to
the electronic properties of materials such as GaAs, and is import-
ant for spintronic devices6. Quantummany-body systems of ultra-
cold atoms can be precisely controlled experimentally, and would
therefore seem to provide an ideal platform on which to study SO
coupling. Although an atom’s intrinsic SO coupling affects its
electronic structure, it does not lead to coupling between the spin
and the centre-of-mass motion of the atom. Here, we engineer SO
coupling (with equal Rashba7 and Dresselhaus8 strengths) in a
neutral atomic Bose–Einstein condensate by dressing two atomic
spin states with a pair of lasers9. Such coupling has not been rea-
lized previously for ultracold atomic gases, or indeed any bosonic
system. Furthermore, in the presence of the laser coupling, the
interactions between the two dressed atomic spin states are modi-
fied, driving a quantum phase transition from a spatially spin-
mixed state (lasers off) to a phase-separated state (above a critical
laser intensity). We develop a many-body theory that provides
quantitative agreement with the observed location of the trans-
ition. The engineered SO coupling—equally applicable for bosons
and fermions—sets the stage for the realization of topological insu-
lators in fermionic neutral atom systems.
Quantum particles have an internal ‘spin’ angular momentum; this

can be intrinsic for fundamental particles like electrons, or a combina-
tion of intrinsic (fromnucleons and electrons) and orbital for composite
particles like atoms. SO coupling links a particle’s spin to itsmotion, and
generally occurs for particles moving in static electric fields, such as the
nuclear field of an atom or the crystal field in a material. The coupling
results from the Zeeman interaction {m:B between a particle’s mag-
netic moment m, parallel to the spin s, and amagnetic fieldB present in
the frame moving with the particle. For example, Maxwell’s equations
dictate that a static electric field E5E0ẑ in the laboratory frame (at rest)
gives a magnetic field BSO5E0 B=mc2ð Þ {ky,kx,0

! "
in the frame of an

objectmovingwithmomentumBk~B kx,ky,kz
! "

, where c is the speedof
light in vacuum andm is the particle’s mass. The resulting momentum-
dependent Zeeman interaction 2m?BSO(k)!sxky{sykx is known as
theRashba7 SOcoupling. In combinationwith theDresselhaus8 coupling
/ 2sxky2sykx, these describe two-dimensional SO coupling in solids
to first order.
In materials, the SO coupling strengths are generally intrinsic

properties, which are largely determined by the specific material and
the details of its growth, and are thus only slightly adjustable in the
laboratory. We demonstrate SO coupling in an 87Rb Bose–Einstein
condensate (BEC) where a pair of Raman lasers create a momentum-
sensitive coupling between two internal atomic states. This SO coupling
is equivalent to that of an electronic system with equal contributions of
RashbaandDresselhaus9 couplings, andwith a uniformmagnetic fieldB
in the ŷ{ẑ plane, which is described by the single-particleHamiltonian:

Ĥ~
B2k̂2

2m
!1{ BzBSO k̂

# $h i
:m~

B2k̂2

2m
!1z

V

2
!szz

d

2
!syz2ak̂x!sy ð1Þ

a parametrizes the SO-coupling strength;V52gmBBz and d52gmBBy
result from the Zeeman fields along ẑ and ŷ, respectively; and !sx,y,z are
the 23 2 Pauli matrices. Without SO coupling, electrons have group
velocity vx5 Bkx/m, independent of their spin. With SO coupling, their
velocity becomes spin-dependent, vx5 B(kx6 2am/B2)/m for spin j"æ
and j#æ electrons (quantized along ŷ). In two recent experiments, this
form of SO coupling was engineered in GaAs heterostructures where
confinement into two-dimensional planes linearized thenative cubic SO
coupling ofGaAs toproduce aDresselhaus term, and asymmetries in the
confining potential gave rise to Rashba coupling. In one experiment a
persistent spin helix was found6, and in another the SO coupling was
only revealed by adding a Zeeman field10.
SO coupling for neutral atoms enables a range of exciting experi-

ments, and importantly, it is essential in the realization of neutral atom
topological insulators. Topological insulators are novel fermionic band
insulators including integer quantum Hall states and now spin
quantum Hall states that insulate in the bulk, but conduct in topo-
logically protected quantized edge channels. The first-known topo-
logical insulators—integer quantum Hall states11—require large
magnetic fields that explicitly break time-reversal symmetry. In a
seminal paper3, Kane andMele showed that in some cases SO coupling
leads to zero-magnetic-field topological insulators that preserve time-
reversal symmetry. In the absence of the bulk conductance that plagues
current materials, cold atoms can potentially realize such an insulator
in its most pristine form, perhaps revealing its quantized edge (in two
dimensions) or surface (in three dimensions) states. To go beyond the
form of SO coupling we created, almost any SO coupling, including
that needed for topological insulators, is possible with additional
lasers12–14.
To create SO coupling, we select two internal ‘spin’ states from

within the 87Rb 5S1/2, F5 1 ground electronic manifold, and label
them pseudo-spin-up and pseudo-spin-down in analogy with an elec-
tron’s two spin states: j"æ5 jF5 1, mF5 0æ and j#æ5 jF5 1,
mF521æ. A pair of l5 804.1 nm Raman lasers, intersecting at
h5 90u and detuned by d from Raman resonance (Fig. 1a), couple
these states with strengthV; here BkL~

ffiffiffi
2

p
pB

&
l and EL5 B2kL2/2m are

the natural units of momentum and energy. In this configuration, the
atomic Hamiltonian is given by equation (1), with kx replaced by a
quasimomentum q and an overall EL energy offset. V and d give rise
to effective Zeeman fields along ẑ and ŷ, respectively. The SO-coupling
term2ELq!sy

&
kL results from the laser geometry, and a5EL/kL is set by

l andh, independent ofV (seeMethods). In contrastwith the electronic
case, the atomicHamiltonian couples bare atomic states :, x~qzkLj i
and ;, x~q{kLj i with different velocities, B x=m~B q+kLð Þ=m.
The spectrum, a newenergy–quasimomentumdispersion of the SO-

coupledHamiltonian, is displayed in Fig. 1b at d5 0 and for a range of
couplingsV. The dispersion is divided into upper and lower branches
E6(q), and we focus on E2(q). For V, 4EL and small d (see Fig. 2a),
E2(q) consists of a doublewell in quasi-momentum15, where the group
velocity hE2(q)/hBq is zero. States near the two minima are dressed
spin states, labelled as j"9æ and j#9æ. As V increases, the two dressed
spin states merge into a single minimum and the simple picture of
two dressed spins is inapplicable. Instead, that strong coupling limit
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Spin orbit coupling: what do we desire?
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Chapter 4

Spin orbit coupled systems

Spin orbit coupling is an essential part of many condensed matter systems. Here I study how

to realize spin-orbit (SO) coupled hamiltonians using ultracold atoms, via Raman dressed

states. This is an intellectual continuation of the earlier discussion of artificial magnetic

fields in Chapter 3.

4.1 Introduction

Spin-orbit (SO) coupling – the interaction between motional and internal degrees of

freedom – is ubiquitous in physical systems from the fine-structure of atoms, to perturbative

and now dramatic effects in condensed matter systems. A general expression of a SO coupled

two level system is

H =
�2k2

2m
1̌ +

δ

2
σ̌z + α (kxσ̌y − kyσ̌x) + β (kxσ̌x − kyσ̌y) .

α gives the strength of the Rashba coupling; β yields the linear Dresselhaus coupling; and δ

produces a Zeeman splitting between the two spin components []. Here we realize an example

of this Hamiltonian using a system of ultracold atoms where a pair of “Raman” laser beams

couple the internal and motional degrees of freedom giving a form of this Hamiltonian with

α = β. With this replacement

H =
�2k2

2m
1̌ +

δ

2
σ̌z + α (kx − ky) (σ̌x + σ̌y) .
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Spin-orbit coupling: Rashba

!dw!r" = #wL$ 1

− i
%e−imvx+i"L + #wR$1

i
%eimvx+i"R, !7"

where wL#0 and wR#0 are the fractions of left- and right-
moving states subjected to the constraint wL+wR=1, while
"L and "R are arbitrary phases. Note that by left -or right-
moving states we mean states with nonzero momentum av-
erage, &p'= $mvex. However, the corresponding average ve-
locity vanishes &!pȞ!p"'=0, so that quasiparticles
characterized by these nonzero momentum single-particle
states are not actually “moving,” as long as the laser fields
generating the spin-orbit coupling are maintained. Note that
rotations in the manifold of the double-well ground states are
distinct from rotations in the pseudo-spin Hilbert space, as
real-space and pseudo-spin coordinates are mixed up by the
spin-orbit interaction. The twofold degeneracy of the single-
particle ground state is preserved if the system is placed in a
harmonic trap. For a potential Vtrap=m%2r2 /2, we can write
the Schödinger equation in momentum representation: The
trap potential plays the role of “the kinetic energy” and the
real kinetic term produces a double-well potential in momen-
tum space, see Fig. 1. The tunneling processes connect the
degenerate vacua in momentum space (24). However, they
do not eliminate the double-degeneracy of the single-particle
states, which is protected by the Kramers-like symmetry !see
Sec. III B".

At low temperatures, the many-body Bose system !1"
condenses into the single-particle states corresponding to the
double-well minima. The transition temperature of this
double-well SOBEC can be calculated using standard text-
book procedures (25). Let us assume that near and below the
transition the band with &= +1 does not contribute and that
we can expand the spectrum near the minima of the band !4".
We define the momentum q in the vicinity of the left or right
minima as follows: p= 'mvex+q, with q(mv. Equation !4"
leads to the anisotropic spectrum:

)E!q" =
qx

2 + qz
2

2m
+ *1 − $v!

v
%2+ qy

2

2m
. !8"

The transition temperature is

Tc =
*

2
* 4

+!3/2"+3/2*1 − $v!

v
%2+1/3n2/3

m
. !9"

We see that if n1/3(1− !v! /v"2)1/6(mv, our approximation is
justified and, in particular, the density of particles in the up-
per band &= +1 is exponentially small.

In the isotropic limit ,=v! /v→1, the transition tempera-
ture formally vanishes. Note that in the isotropic case v=v!
the spin-orbit term of the Hamiltonian !1" is equivalent to the
Rashba model (26) and can be reduced to the latter via the
rotation exp!i*-̌2 /4" in the pseudo-spin space. In this case,
the spectrum !4" has minima on a one-dimensional circle
#px

2+ py
2=mv !see Fig. 2". The single-particle ground state is

infinitely degenerate and the most general expression for the
corresponding wave function is

!ring!r" = ,
0

2* d.

2*
#w!."U! −!."ei"!."e(imv!x cos .+y sin ."),

!10"

where w!."/0 is the angle-dependent weight of the Bose
condensate on a circle (-d. / !2*"w!."=1) and "!." is the
angle-dependent phase. An especially interesting class of
ground states corresponds to w!." not vanishing anywhere
on the circle. In this case, the phase "!." must satisfy the
constraint "!.+2*"−"!."=2*n, with n"Z=*1!S1" being
an integer winding number. Therefore there may exist a num-
ber of topologically distinct ground states !characterized by
the winding number", which cannot be deformed into one
another via any continuous transformation. We note here that
a transition into the ring SOBEC is similar to a “weak-
crystallization transition” discussed by Brazovsky (27) !see
also Refs. (28)". In this case, the phase volume of fluctua-
tions is very large, which drives the !classical" transition first
order. Even though the transition temperature into the ring
SOBEC vanishes in the thermodynamic limit, in a finite
trapped system, the energy scale for the crossover into this
state will be nonzero (29).

III. EFFECTS OF DENSITY-DENSITY INTERACTION

The most general ground-state many-body wave function
of a noninteracting “double well BEC” is

.!N' = /
n=0

N
cn

#n!!N − n"!
!B̂L

†"n!B̂R
†"N−n.vac' , !11"

where n and N−n are the numbers of left and right movers,
B̂L/R

† are the corresponding creation operators, and cn are ar-
bitrary coefficients satisfying /n0cn02=1. In the absence of
spin-orbit interaction, a two-component bosonic system has a
ferromagnetic ground state with fully polarized pseudo-spin
(12,30). We emphasize that this is not the case for the
double-well many-body ground state !11" that describes the

P

x

y

P

E(p)

FIG. 2. !Color online" Schematic picture of the band structure
described by Eq. !4" for the isotropic Rashba-type case with v=v!
for pz=0. The inside sheet represents the &= +1 band, while the
outside sheet corresponds to &=−1 and has minima a one-
dimensional circle #px

2+ py
2=mv.

SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A 78, 023616 !2008"
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Pure Rashba: 
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b. Realized SO Zeeman Field

Figure 4.1: A schematic illustration of SO coupling using ultracold atoms. a. Physical
geometry of laser beams, and two levels coupled by lasers. b. Resulting SO field as a
function of x and y momentum.

After a spatial rotation of π/4 about ẑ we arrive at the Hamiltonian realized in our experi-

ment

H =
�2k2

2m
1̌ +

δ

2
σ̌z + 2αkxσ̌y.

We construct this Hamiltonian using a pair of Raman lasers that couple two internal atomic

states |F = 1,mF = −1� and |F = 1,mF = 0�. Together these two states form a two-level

pseudo-spin system with SO coupling.

The two Raman lasers detuned by the ω = 2π × 6.5 MHz linear Zeeman shift between

the target levels produce a rapidly moving lattice potential Ω(x, t) = Ω sin (2kRx− ωt) that

couple together the two atomic levels |a� and |b�. After having made the rotating wave

approximation (Chapter 1.4.1) the atomic Hamiltonian is

H =
�2
2m



 k̂2 0

0 k̂2



+
Ω

2



 0 i exp [i2kRx̂]

−i exp [−i2kRx̂] 0



 .

Spin-orbit coupling: Rashba = Dresselhaus

GaAs Refs.
J. D. Koralek et al, Nature (2009); C. H. L. Quay et al, Nat. Phys. (2010)
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Non-abelian gauge fields and Spin-Orbit coupling
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α = β. With this replacement

H =
�2k2

2m
1̌ +

δ

2
σ̌z + α (kx − ky) (σ̌x + σ̌y) .

Spin-orbit coupling

Uniform Non-abelian gauge field

Spin-orbit coupling is a (sometimes) non-abelian gauge field!

Ȟ =
�2
2m

��
(kx1̌ +

1

2
(ασ̌y + βσ̌x)

�2
+

�
(ky 1̌−

1

2
(ασ̌x + βσ̌y)

�2�
+

δ

2
σ̌z + E01̌
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in

the limit µ=0, t= |�|. Each spinless fermion in the chain is decomposed in

terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy

end Majoranas γA,1 and γB,N as shown
23
. b, A spin–orbit-coupled

semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana

modes by applying an external magnetic field
21,22

. c, Band structure of the

semiconducting wire when B=0 (dashed lines) and B �=0 (solid lines).

When µ lies in the band gap generated by the field, pairing inherited from

the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = −it

N−1�

x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1 + iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend

†|0�,
where dend|0�=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
�

dx
�
ψx

†

�
− h̄

2∂x
2

2m
−µ− ih̄uê ·σ∂x

− gµBBz

2
σ z

�
ψx + (|�|eiϕψ↓xψ↑x +h.c .)

�
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = � = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on �
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |�|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |�| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu

2, |�| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey + iex)/gµB|Bz |)∂x�x and
ψ↓x ∼ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ∼
�

dx
�
�x

†

�
− h̄

2∂x
2

2m
−µeff

�
�x

+
�
|�eff|eiϕeff�x∂x�x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|�eff|eiϕeff ≈ u|�|
gµB|Bz |

eiϕ(ey + iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
−

�
|�|2 +µ2

����

For |µ|<µc =
√
(gµBBz/2)2 − |�|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|�|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Written as a “2x2” vector potential, this S-O
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However, the Hamiltonian is non-trivial owing
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FIG. 1. Effective Zeeman lattice potential. a-b. A uniform field B0ey Zeeman-splits the levels in

the F =1 ground state manifold of 87Rb by ωZ, and provides a quadratic Zeeman shift �. A pair

of orthogonally-polarized counterpropagating Raman beams (ω,ω+∆ω) illuminates the atomic

sample, which is also dressed by a rf magnetic field Brfex with frequency ν = ∆ω/2π. The rf

and Raman fields have coupling strengths Ωrf and ΩR. c. The red, black and blue traces are the

eigenvalues of Hrf+R(x) for (Ωrf,ΩR,Ωz)= (1, 10, 0)ER, the spatial periodicity of the lowest band

gives rise to our effective Zeeman lattice. c-d. Points 1 to 5 indicate the precession of Beff(x), and

the solid angle ΩB it subtends when an atom tunnels to the nearest neighboring site, giving the

Peierls phase φ.

optical lattices [6] and Raman-assisted tunneling in an optical superlattice [7]; our approach

is essentially different since it does not involve optical lattices, and tunneling in our 1D

engineered potential does not rely on Raman transitions.

Our 1D Zeeman lattice, arises from a combination of rf and Raman fields that couple

states in the F =1 ground-state manifold of 87Rb (Fig. 1a-b), where a uniform magnetic field

B0ey sets a Zeeman splitting ωZ/2π=3.25 MHz and a quadratic Zeeman shift ��=0.42ER.

3

0

-1

1

 / 

0

1

0.5

k x
 / 

k R

0.05

0.01

0.03

t /
 E

R
-4 -2 0 2 4 6-6

Effective Zeeman field along z, z / ER

a.

b.

c.
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FIG. 3. Peierls transformation. For each Ωz in these measurements, �Ωrf ≈ 1ER was carefully

chosen to maintain t nearly constant. The Raman coupling was kept at �ΩR = 10.0(8)ER. a.

Shift of the bandstructure due to the Peierls phase φ, measured using adiabatic (crosses) and

sudden (circles) changes to the bandstructure. The sloshing phase γ from induced oscillations is

also indicated (squares). b. Sloshing amplitude after suddenly changing the bandstructure. We

observed energetic instabilities in the region indicated in red. c. Tunneling amplitude t obtained

from induced sloshing.

spin-momentum states up to kx=±4kR become populated. We performed such experiments

for numerous points in the ΩR−Ωrf plane for 0.5< �Ωrf/ER< 4 and 1< �ΩR/ER< 17. We

minimized the effects of interactions by working with small BECs (XXXX atoms). We ob-

served a symmetric nature of spin-momentum states with opposite momentum and opposite

spins and multiple revivals of the initial spin-momentum state, as well as excellent agreement

with the expected behavior (continuous lines) which we calculated from the single particle

Hamiltonian Hrf+R (see Online Supplementary material).

Our 1D effective Zeeman lattice also offers a convenient way to control the transport of

particles [17], by adjusting the relative phase between the rf and Raman coupling fields. It

also may be helpful in the realization a 1D vortex lattice, as it adds no further spontaneous

8

The frequency difference between the Raman beams ∆ω/2π was exactly equal to the rf

frequency ν. In the basis of spin states {|mF�}mF=0,±1, in the frame rotating at ν and under

the rotating wave approximation, the combined rf-Raman coupling Hamiltonian contributes

a term

Hrf+R(x) =
gFµB

� Beff(x) · F+HQ (2)

to the overall Hamiltonian, where F=(F̂x,F̂y,F̂z) is the F =1 angular momentum operator.

The form of Hrf+R(x) portrays the Hamiltonian of the Zeeman effect, for an induced Zeeman

field Beff(x)=�Ω/
√
2gFµB where Ω=

�
Ωrf+ΩRcos(2kRx),−ΩRsin(2kRx),

√
2δ
�
; Ωrf and ΩR are

the rf and Raman coupling strengths, respectively; δ=2πν−ωZ is the detuning from Raman

resonance; µB is Bohr’s magneton; gF is the Landé g-factor; and HQ=−�(�21̂−F̂ 2
z )/� describes

the quadratic Zeeman shift.

When Ωrf�ΩR, δ, the effective Zeeman shift reduces to gFµBBeff/�≈Ωx/
√
2. Surprisingly,

when ΩR �Ωrf, δ, we obtain an analogous result gFµBBeff/�≈ [ΩR + Ωrf cos(2kRx)]/
√
2 =

Ω�
x/
√
2; this result is easily interpreted after performing a unitary transformation into the

frame where the Raman field is spatially uniform and the rf field is not [8]. In either case,

the spatially varying effective Zeeman field Beff(x) produces a 1D lattice potential for the

F =1 spin states (Fig. 1c). As the atoms tunnel from site to site, Beff rotates by 2π about

ez (Fig. 1d) and the atoms acquire a geometrical Berry’s phase [9] proportional to the solid

angle ΩB subtended by Beff. The periodicity of the lattice is set by the wavelength of the

Raman beams and quantities such as t and φ, obtained from E(kx), are non-trivial functions

of Ωrf, ΩR and Ωz.

We experimentally characterized the lattice is three ways: first, since in the tight binding

regime m
∗
is inversely proportional to t (Fig. 2a), we measured the effective mass m

∗
=

�2(d2
E(kx)/dk

2
x)

−1
in rf-Raman dressed systems; second, we quantified the Peierls phase φ;

and finally, to understand the spatial structure of our lattice, we investigated the diffraction

of BECs from effective Zeeman lattice.

In each case, we first prepared
87
Rb BECs in the |F = 1,mF =−1� state, in an crossed

optical dipole trap located at the intersection of a pair of 1064 nm laser beams, with trap

frequencies (fx, fy, fz) = (13, 45, 90) Hz [10], in the bias field B0ey. As described in Ref.

[11] we dress the BEC with a rf magnetic field with frequency ν=3.25 MHz and an initial

coupling strength Ωrf = 3ER, and adiabatically transferred it into the lowest energy dressed

state.

4

Ultracold atoms subjected to artificial gauge fields can realize phenomena usually in the

province of electronic systems, such as the quantum Hall effect (for abelian gauge fields),

or topological insulators (for non-abelian gauge fields). In either case, it is important to

add a lattice potential. Current techniques for creating periodic potentials in ultracold

atom systems use optical standing waves created with suitable polarized counterpropagating

lasers [1]. In contrast, we describe a one-dimensional (1D) “Zeeman lattice”for ultracold

atoms created with a combination of rf and Raman coupling fields, without any optical

standing waves. In this lattice, atoms can acquire quantum mechanical phase as they hop

from site to site, explicitly realizing the Peierls transformation [2]. Our approach extends

existing Raman dressing schemes to directly construct an artificial gauge field in conjunction

with an effective lattice potential.

Optical lattices generally result from the electric dipole interaction between an atom

and the electric field of an optical standing wave Vdip(r)∝α(λ)I(r), where α is the atomic

polarizability, λ is the laser wavelength and I(r) is the laser field’s spatial intensity distribu-

tion [1]. In such lattices, the natural units of momentum and energy are given by the single

photon recoil momentum �kR=2π�/λ and its corresponding energy ER=�2k2
R/2m, where

m is the mass of the bare atom.

The physics of quantum particles in a deep 1D periodic potential V (x)=V0 cos2(kRx) in

tight-binding regime (for V0 � 5ER), are described by the Hamiltonian

H = −t

�

j

(â†j âj+1 + h.c.), (1)

where â
†
j describes the creation of a particle at site j. The energy of the lowest band

is E(kx) ≈ −2t cos(πkx/kR), where t is the matrix element for tunneling between near-

est neighboring sites, and kx is the crystal momentum. For particles with charge q in

a lattice and in the presence of a vector potential A, a new tight-binding Hamiltonian

H=
�

j[t exp(iφ)â
†
j+1âj+h.c.] is readily obtained by means of the Peierls substitution [2]

with energies E(kx)=−2t cos(πkx/kR−φ); the phase acquired by a particle after tunneling to

a neighboring site is φ=(q/�)
�
j

j+1
A·ds [3].

We realize the Peierls substitution by synthesizing a 1D effective Zeeman lattice, in a

F = 1 87Rb Bose-Einstein condensate (BEC), in which we independently control both t

and φ. This goes beyond previous experiments which changed only the amplitude and

sign of t [4, 5]. Other experiments have demonstrated control of φ by means of rotating

2

Refs. 
K. Jimenez-Garcia et al (in preparation)
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in

the limit µ=0, t= |�|. Each spinless fermion in the chain is decomposed in

terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy

end Majoranas γA,1 and γB,N as shown
23
. b, A spin–orbit-coupled

semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana

modes by applying an external magnetic field
21,22

. c, Band structure of the

semiconducting wire when B=0 (dashed lines) and B �=0 (solid lines).

When µ lies in the band gap generated by the field, pairing inherited from

the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = −it

N−1�

x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1 + iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend

†|0�,
where dend|0�=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
�

dx
�
ψx

†

�
− h̄

2∂x
2

2m
−µ− ih̄uê ·σ∂x

− gµBBz

2
σ z

�
ψx + (|�|eiϕψ↓xψ↑x +h.c .)

�
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = � = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on �
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |�|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |�| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu

2, |�| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey + iex)/gµB|Bz |)∂x�x and
ψ↓x ∼ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ∼
�

dx
�
�x

†

�
− h̄

2∂x
2

2m
−µeff

�
�x

+
�
|�eff|eiϕeff�x∂x�x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|�eff|eiϕeff ≈ u|�|
gµB|Bz |

eiϕ(ey + iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
−

�
|�|2 +µ2

����

For |µ|<µc =
√
(gµBBz/2)2 − |�|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|�|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Effective Hamiltonian for dressed spins

Two pseudo-spin contact interactions

mF = -1, mF = 0 mixture: miscible for 87Rb

Ph.D. Thesis of Ming-Shien Chang
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Effective Hamiltonian for dressed spins

Two pseudo-spin contact interactions
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Current experiments with Bosons
Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)

Spin orbit coupling of pseudo spin-1/2 atoms

Refs. 
Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)

Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010),  J. Alicea et al, N. Physics (2011)
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Modified interactions: optical screening

A dielectric function

Interacting fermions in a single component gas
Effective p-wave interactions!!

Test with Bosons, look for d- and g- wave interactions



Colliding BEC’s



Collisions as a probe of interatomic potentials

Thomas et al PRL (2004); Ch. Buggle PRL (2004)

partial-wave phase shifts for the l ! 0 and 2 channels
with total projection quantum number mF ! 4 when two
jF ! 2; mF ! 2i atoms collide in a total magnetic field of
0.22 mT, the bias field of this experiment (there is negli-
gible difference at zero field). Using Eq. (1) these phase
shifts give the s-wave, d-wave, and total cross sections
shown in Fig. 3(b). In Fig. 3(c) we present the fraction of
scattered atoms Nsc=Ntot versus the collision energy as
measured in our experiments. Since Nsc=Ntot is on the
order of 40% close to the resonance (i.e., large depletion),
the number of scattered particles is not proportional to the
total elastic cross section !"T#. As a result, the observed
d-wave resonance peak is not very pronounced even
though the total cross section grows by a factor of $4
with respect to the zero energy limit. However, when the
effect of depletion is included [21] we obtain good agree-
ment between the experimental and theoretical scattering
fractions [Fig. 3(c)]. The model predicts the d-wave reso-
nance to occur at 275 "K, and the measurements are
consistent with this to within 25 "K.

As is obvious from Fig. 2, the scattered particles are
emitted in spatial patterns which depend on the collision
energy. It is possible to relate these patterns to the differ-
ential cross section when the effects on the particle dis-
tribution of the harmonic potential and the projection
onto the imaging plane are accounted for. As a result of

the scattered particles expanding in an anisotropic har-
monic potential, the projected halos seen in Fig. 2 have
elliptical envelopes rather than the circle expected for a
free-space Newton sphere as shown in Fig. 1. However,
due to the cylindrical symmetry about the collision axis
(which is perpendicular to the optical axis of our imaging
system), full 3D tomographical information on the scat-
tering can be extracted from the 2D absorption images
via the inverse Abel transform [17,22]. Applying Abel
inversion to the absorption images gives us the angular
particle distribution in the trap at the time of image
acquisition, to which the distribution at the time of colli-
sion (the free-space distribution) is related in a straight-
forward manner [23].

In Fig. 4(a) we show polar plots of the probability
density nsc"#; T# / d!=d! for a scattered particle to be
emitted at the polar angle # as determined from the
absorption images in Fig. 2. The angular distributions
for different temperatures have been normalized with
respect to each other such that

R
nsc"#; T#d! ! 1 for all

T and were determined from the Abel inverted images by
counting the particles within angular bins at a unit sphere
transformed to the quarter period ellipsoid via the rela-
tion in Ref. [23]. For comparison we present in Fig. 4(b)
the temperature development of the normalized differen-
tial cross section as predicted by Eq. (1) using the partial-
wave shifts from the previously described model. The
scattering patterns of Figs. 4(a) and 4(b) show the same
behavior and the minor discrepancies between the experi-
mental and theoretical distributions may be attributed to

FIG. 3. Dependence on collision energy. (a) The s (dotted
line) and d (dashed line) partial-wave phase shifts from the
theoretical model. (b) The s-wave (dotted line), d-wave
(dashed line), and total (solid line) cross sections calculated
from the model partial-wave phase shifts. (c) The measured
scattered fraction of atoms Nsc=Ntot (filled circles). The black
curve shows the fraction as given by the model cross section
when depletion of the colliding atom clouds is accounted for.

FIG. 2 (color online). Absorption images acquired at a quar-
ter of a radial trap period after the collision of two doubly spin-
polarized Rb clouds (visible as dark ellipses) for various
collision energies. The halos of scattered particles have ellip-
tical envelopes since they are evolving in an anisotropic har-
monic trap which is weakest in the horizontal direction
(z direction). At the selected time of acquisition the scattering
halos have the maximum radial excursion in the trap.
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with total projection quantum number mF ! 4 when two
jF ! 2; mF ! 2i atoms collide in a total magnetic field of
0.22 mT, the bias field of this experiment (there is negli-
gible difference at zero field). Using Eq. (1) these phase
shifts give the s-wave, d-wave, and total cross sections
shown in Fig. 3(b). In Fig. 3(c) we present the fraction of
scattered atoms Nsc=Ntot versus the collision energy as
measured in our experiments. Since Nsc=Ntot is on the
order of 40% close to the resonance (i.e., large depletion),
the number of scattered particles is not proportional to the
total elastic cross section !"T#. As a result, the observed
d-wave resonance peak is not very pronounced even
though the total cross section grows by a factor of $4
with respect to the zero energy limit. However, when the
effect of depletion is included [21] we obtain good agree-
ment between the experimental and theoretical scattering
fractions [Fig. 3(c)]. The model predicts the d-wave reso-
nance to occur at 275 "K, and the measurements are
consistent with this to within 25 "K.

As is obvious from Fig. 2, the scattered particles are
emitted in spatial patterns which depend on the collision
energy. It is possible to relate these patterns to the differ-
ential cross section when the effects on the particle dis-
tribution of the harmonic potential and the projection
onto the imaging plane are accounted for. As a result of

the scattered particles expanding in an anisotropic har-
monic potential, the projected halos seen in Fig. 2 have
elliptical envelopes rather than the circle expected for a
free-space Newton sphere as shown in Fig. 1. However,
due to the cylindrical symmetry about the collision axis
(which is perpendicular to the optical axis of our imaging
system), full 3D tomographical information on the scat-
tering can be extracted from the 2D absorption images
via the inverse Abel transform [17,22]. Applying Abel
inversion to the absorption images gives us the angular
particle distribution in the trap at the time of image
acquisition, to which the distribution at the time of colli-
sion (the free-space distribution) is related in a straight-
forward manner [23].

In Fig. 4(a) we show polar plots of the probability
density nsc"#; T# / d!=d! for a scattered particle to be
emitted at the polar angle # as determined from the
absorption images in Fig. 2. The angular distributions
for different temperatures have been normalized with
respect to each other such that

R
nsc"#; T#d! ! 1 for all

T and were determined from the Abel inverted images by
counting the particles within angular bins at a unit sphere
transformed to the quarter period ellipsoid via the rela-
tion in Ref. [23]. For comparison we present in Fig. 4(b)
the temperature development of the normalized differen-
tial cross section as predicted by Eq. (1) using the partial-
wave shifts from the previously described model. The
scattering patterns of Figs. 4(a) and 4(b) show the same
behavior and the minor discrepancies between the experi-
mental and theoretical distributions may be attributed to

FIG. 3. Dependence on collision energy. (a) The s (dotted
line) and d (dashed line) partial-wave phase shifts from the
theoretical model. (b) The s-wave (dotted line), d-wave
(dashed line), and total (solid line) cross sections calculated
from the model partial-wave phase shifts. (c) The measured
scattered fraction of atoms Nsc=Ntot (filled circles). The black
curve shows the fraction as given by the model cross section
when depletion of the colliding atom clouds is accounted for.

FIG. 2 (color online). Absorption images acquired at a quar-
ter of a radial trap period after the collision of two doubly spin-
polarized Rb clouds (visible as dark ellipses) for various
collision energies. The halos of scattered particles have ellip-
tical envelopes since they are evolving in an anisotropic har-
monic trap which is weakest in the horizontal direction
(z direction). At the selected time of acquisition the scattering
halos have the maximum radial excursion in the trap.
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Schematic

B Energy-momentum dispersionA Three-level coupling scheme

C Schematic of scattering halo
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Effective mass effect

“Band” structure
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Density of states effect
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Modified collisions
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Modified matrix element effect
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Moving forward to Fermions

Spin orbit coupling of pseudo spin-1/2 atoms

Refs. 
Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)

Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010),  J. Alicea et al, N. Physics (2011)
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in

the limit µ=0, t= |�|. Each spinless fermion in the chain is decomposed in

terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy

end Majoranas γA,1 and γB,N as shown
23
. b, A spin–orbit-coupled

semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana

modes by applying an external magnetic field
21,22

. c, Band structure of the

semiconducting wire when B=0 (dashed lines) and B �=0 (solid lines).

When µ lies in the band gap generated by the field, pairing inherited from

the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = −it

N−1�

x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1 + iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend

†|0�,
where dend|0�=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
�

dx
�
ψx

†

�
− h̄

2∂x
2

2m
−µ− ih̄uê ·σ∂x

− gµBBz

2
σ z

�
ψx + (|�|eiϕψ↓xψ↑x +h.c .)

�
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = � = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on �
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |�|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |�| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu

2, |�| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey + iex)/gµB|Bz |)∂x�x and
ψ↓x ∼ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ∼
�

dx
�
�x

†

�
− h̄

2∂x
2

2m
−µeff

�
�x

+
�
|�eff|eiϕeff�x∂x�x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|�eff|eiϕeff ≈ u|�|
gµB|Bz |

eiϕ(ey + iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
−

�
|�|2 +µ2

����

For |µ|<µc =
√
(gµBBz/2)2 − |�|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|�|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Pairing: 40K

In 1D and 2D robust pairing (at single particle level) 
at all attractive coupling strengths

Refs. 
C. Regal (Ph.D. thesis); Bloch, I., Dalibard, J. & Zwerger, Rev. Mod. Phys. 80, 885–964 (2008).

CHAPTER 5. ELASTIC SCATTERING AT FESHBACH RESONANCES 49

For this measurement we started with a gas of fermions in the mf=−7/2,−9/2

spin states at T ≈ 2 TF . The gas was taken out of thermal equilibrium by

modulating the optical trap intensity at 2 νy, which caused selective heating in

the y-direction. (We could selectively modulate one radial direction because for

this measurement our optical trap was not cylindrically symmetric, νx = 1.7

νy.) The exponential time constant for energy transfer between the two radial

directions, τ , was measured as a function of magnetic field. τ is related to the s-

wave collision cross section through 1/τ = 2〈n〉σv/α. v = 4
√

kbT/πm is the mean

relative speed between colliding fermions and 〈n〉 = 1
Ntot

∫

n7(r) n9(r) d3r is the

density weighted density. α is the calculated number of binary s-wave collisions

required for rethermalization [127].
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Figure 5.1: Collision cross section measured near an s-wave Feshbach resonance
between 40K atoms in the mf = −7/2,−9/2 spin states at T = 4.4 µK [57]. In
between the peak and dip in σ the interaction is attractive; everywhere else it is
repulsive.

Figure 5.1 plots the result of this measurement as a function of the magnetic

field, B. The magnetic field was calibrated through radio-frequency (rf) transi-

tions between mf levels in the 40K system. An advantage of the cross-dimensional

rethermalization technique is that it allows measurements of σ over a large range.

Through cross section measurements that extend over four orders of magnitude,



Theory questions

Pairing gap is intrinsic not from proximity effect



Theory questions

Pairing gap is intrinsic not from proximity effect
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Theory questions

Pairing gap is intrinsic not from proximity effect
Coupling between needles important?  Finite size important?

What happens at µ smoothy changes and crosses from 
TSC to SC phases?

If Majorana fermions’s do form at these interfaces, how to detect?
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The ugly: 40K

Lifetime, lifetime, stability

Spontaneous emission
(lights scattering)

t ~ 0.5 - 1 s (double well)
t ~ 0.1 s (single well) Feshbach losses

(molecule formation)
t ~ 1 s (1/kF a ~ -1)
t ~ 0.1 s (1/kF a ~ 0) ~ 200 µG absolute 

stability at 200 G
(1 ppm)



Gauge fields



Mixtures


