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What are materials?

Ian’s answer I: “chunks of stuff.”

Liquid Helium
125 mg/cm?




Ultracold neutral atoms
~10" cm3 or 100 ng/cm5

(air is ~1 mg/cm?)

Are these materials?




They can be fluids

They can be insulators

first: Greiner et al Nature (2002)




They can be bosons They can be fermions

They can be molecules They can be atoms

e.g., Regal Nature (2003)




They can be 3D They can be 2D They can be 1D

@,

e.g., Hadzibabic Nature (2006) e.g., Kinoshita Nature (2006)




Ends here every 20 s

Starts like this




What are materials?

Ian’s answer: “stuff”

In a finite volume of space
Have “mechanical properties”

Or “fluid properties”

Cold atoms are: good materials

Numerous properties can
be controlled on many timescales

Very simple Hamiltonian

Cold atoms are: bad materials

Short lived

Interesting features all added

by hand (complex experiments).




Artificial gauge fields

Vector potential Electric field
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Spin Orbit coupling

Can be a matrix




Spin orbit coupling of pseudo spin-1/2 atoms

Current experiments with Bosons
Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)
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Refs.
Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)
Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010), J. Alicea et al, N. Physics (2011)
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Spin orbit coupling with ultracold atoms

[ Raman dressed states N [ Spin orbit coupling, engineered )
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Spin orbit coupling: what do we desire?

Spin-orbit coupling

5 )
= —1+ =6, + a(k0, — ky05) + B (ks — k,5,) .

H =
2m 2

\.

a gives the strength of the Rashba coupling; 5 yields the linear Dresselhaus coupling; and ¢

produces a Zeeman splitting

Rashba Dresselhaus
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Spin-orbit coupling: Rashba

H =

Spin-orbit coupling
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T. D. Stanescu and B. Anderson and V. Galitski PRA (2008)




Spin-orbit coupling: Rashba = Dresselhaus

Spin-orbit coupling

- hPk% . . 0.

Equal Rashba and Dresselhaus: @ = (3

Y momentum [k, |

-— € < < < < |

e
———————————
Lo b e e b e e b e b e e

1
1
1
1
1
1
1
P
1
1
1
1
1
|
1

-— - - - - - - - - - - - -— -

[ > > |

[ o > > > > > > > > = = > - — |
[ > — > —> —> —> —> —> —> —> |

-1 0 1 2 3

X momentum [ky, ]

GaAs Refs.
J. D. Koralek et al, Nature (2009); C. H. L. Quay et al, Nat. Phys. (2010)




Non-abelian gauge fields and Spin-Orbit coupling

Spin-orbit coupling

Pk?. § 5 5 g .
= 51+ 50 +a(kdy —kyoo) + 8 (kedr — ky0y)

H

Uniform Non-abelian gauge field
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H=—— [(lm = LA,) "+ (k1 - %Ay) ] + 50, + Bol

Spin-orbit coupling & a (sometimes) non-abelian gauge field!
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Spin orbit coupling of pseudo spin-1/2 atoms

Current experiments with Bosons

Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)
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Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)
Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010), J. Alicea et al, N. Physics (2011)




Rubidium 87: “The GaAs of atoms”
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Not the SOC we want!
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Frequency [GHz]
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F=1 manifold

Rubidium 87: 5S12 ground state
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Engineered spin-orbit coupling

Natural dimensions

Length: X\ ~ 790 nm

Momentum: ik, = 27 /\

h2 k2
2m

Energy: E, = ~ h x 3.4 kHz = 14 peV




Engineered spin-orbit coupling

Momentum representation
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Spin orbit coupling: origin

Momentum representation

Hzg{uk—m sy

Spin 1/2 bosons????
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Typical data

o
Double Well d of
“Spin-orbit limit” £
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Peilerls lattice

a.Level diagram b.Experimental setup . .
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Spin orbit coupling of pseudo spin-1/2 atoms

Current experiments with Bosons

Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)
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Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)
Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010), J. Alicea et al, N. Physics (2011)




Effective Hamiltonian for dressed spins

Two pseudo-spin contact interactions

. 1 C2\ , . A2, €2 /. . A
Hint :5 /dST : {(Co + 5) (,0¢ +,0¢) + E (pi — p%) + CQ,O¢,0T] :




Effective Hamiltonian for dressed spins

Two pseudo-spin contact interactions

. 1 C2\ , . A2, €2 /. . A
Hint :5 /dST : {(Co + 5) (,0¢ +,0¢) + E (pi — p%) + CQ,O¢,0T] :

mr= -1, mr= 0 mixture: miscible for % Rb

-
co = 7.8 x 10712 Hz - cm? .
mpgp = 0
co = —3.6x 107 Hz - cm?
mp = +1

Ph.D. Thesis of Ming-Shien Chang
(Chapman group)




Effective Hamiltonian for dressed spins

Two pseudo-spin contact interactions
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Phase separation, s

Transition from miscible to immaiscible

Oio Phase Mixed 919 Phase Separated
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A quantum phase transition
Previously unexpected

Our MFT prediction
Phase separation at Q = 0.19 £,

Ref.
Y.-J. Lin et al Nature (2011),




Spin orbit coupling of pseudo spin-1/2 atoms

Current experiments with Bosons

Spin orbit coupling for pseudo spin 1/2 Bosons (testbed platform)
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Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)
Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010), J. Alicea et al, N. Physics (2011)




Modified interactions: optical screening

Interacting fermions in a single component gas

Effective p-wave interactions!!

Test with Bosons, look for d- and g- wave interactions

21,2 2
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A dielectric function
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Colliding BEC'’s




Collisions as a probe of interatomic potentials

Colliding BEC's

o (10™%ent)

All s-wave

Nsc/Nlot

— |ots of d-wave

Thomas et al PRL (2004); Ch. Buggle PRL (2004)




Schematic

A Three-level coupling scheme B Energy-momentum dispersion E/E;

C Schematic of scattering halo




Effective mass eftfect

“Band” structure
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K,/ K,

o N O

Momentum, k, / k;
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Density of states effect
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K,/ k.

Momentum, k, / k;

o
o
T

1

Y
(6)]

Peak Signal (arb. units)
=

Modified collisions
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Modified matrix element effect

A Enhanced small B
r angle scattering _*
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Spin orbit coupling of pseudo spin-1/2 atoms

Moving forward to Fermions
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Cold atom experiments: Y.-J. Lin et al Nature (2011), R. A. Williams Science (accepted, 2011)
Theory: C. Zhang et al, PRL (2008), J. D. Sau et al, PRL (2010), J. Alicea et al, N. Physics (2011)




Pairing: 0K

- k. Rkp. . Q. \ - L
= ¥t (x) ( 1+ Lo, + 2(;2) U (x) + [A\IJT(X)\IQ(X) n h.c.]

2
Epip xg

Epsp x e_”/kF|a|, with g = 2ﬂh2a/m

In ID and 2D robust pairing (at single particle level)

at all attractive coupling strengths

180 200 220 240 260
B (gauss)

Refs.
C. Regal (Ph.D. thesis); Bloch, I., Dalibard, J. & Zwerger, Rev. Mod. Phys. 80, 885-964 (2008).




Theory questions

Pairing gap 1s ntrinsic not from proximity effect

k2. R2kp. . Q. )\ . A A )
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Theory questions

Pairing gap 1s ntrinsic not from proximity effect

mk? . Wkg . Q. R
1+ —kaéy + 6z> U(x) + [Aewa(x)QM(x) + h.c.

2m m 2
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Theory questions

Pairing gap 1s intrinsic not from proximity effect
Coupling between needles important? Finite size important?
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Theory questions

Pairing gap 1s trinsic not from proximity effect
Coupling between needles important? Finite size important?

What happens at p smoothy changes and crosses from
TSC to SC phases?
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If Majorana fermions’s do form at these interfaces, how to detect?
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The ugly: 40

Litetime, lifetime, stability

-

.

Spontaneous emission
(lights scattering)

t ~ 0.1 s (single well) (

t ~0.5-1s (double Well)

~

\_

Feshbach losses
(molecule formation)
t~1s (l/kFa~ -1)
t~0.1s(l/kra ~0)

|

~ 200 pG absolute
stability at 200 G

(1 ppm)










