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Group

Rubidium 87

PERIODIC TABLE
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IA om I c ro e Ies o e emen s Technology Administration, U.S. Department of Commerce VIIA
2, H 1
S Frequently used fundamental physical constants Physics Standard Reference |2 S,
For the most accurate values of these and other constants, visit physics.nist.gov/constants Laboratory Data. Group He
Hydrogen 1 second = 9 192 631 770 periods of radiation corresponding to the transition physics.nist.gov www.nist.gov/srd M
100794 between the two hyperfine levels of the ground state of **Cs £.002602
: I 1 ; 13 14 15 16 17 ‘
i speed of light in vacuum c 299792458 ms (exact) |:| Solids 152
13.5984 Planck constant h 6.6261x10%J's (h = hi27) O Liquids 1A IVA VA VIA VIIA 24,5874
-19 o o o
3 ’S,, | 4 elementary charge e 1.6022><10731C |:| CEr 5 %:,|6 |7 *s3, |8 °?,19 %P, (10 s,
L' electron mass me 9.1094 x 10~ kg gt C O N
2 I mec®> 05110 MeV L] Artificially e
Lithium proton mass m, 1.6726 x 10 % kg Prepared Boron Carbon Nitrogen Oxygen Fluorine Neon
?%‘2” 9'?1 82 fine-structure constant a 1/137.036 11%8;21 11%'2012272 1142'202(2373 11?29?2944 1?'252’82420%2 122212;’76
s°2s s = s°2s°2p s°2s°2p s°2s72p s°252p s25°2p s°252p
53917 34 ESE L gw ;022338122 r1“015H 8.2980 11.2603 | 145341 | 13.6181 174228 | 215645
= 5 X z > ° ®
1 %s,]|12 Rre Taeoer v 13 e;,[14_ p,[15_'s;,[16 _'p,[17_’P5,[18_ ',
N a M Boltzmann constant k 1.3807 x 102 JK ™ Sl S Ar
3 Sodium Magne! Aluminum Silicon Phosphorus Sulfur Chlorine Argon
22.989770 24.30 26.981538 28.0855 30.973761 32.065 35.453 39.948
[Ne]3s [Ne] | |:|)’B I\‘/‘B VSB V?B VﬁB 8 VSIBII i :é |1|§ Nel3s?3p | [Nel3s?3p? | [Ne3s?p® | [Nel3s?3p® | [Nel3s’3p® | [Nej3s’3p’
5.1391 7.644 [ | 5.9858 8.1517 10.4867 10.3600 12.9676 15.7596
19 %,|/20 §s,|21 0,,(22 °f|23 °‘Fr,|24 's,|25 °s,,[|26 °D,|27 ‘F,,|28 °F |29 %,,|30 's,|31 ?*P;,[32 °P,|33 “s;, |34 °P,[35 °*P5, |36 s,
s . .
B Sc | Ti Cr Mn|{Fe [Co | Ni [Cu|Zn | Ga|Ge | As | Se | Br | Kr
3 4 Potassium Calci Scandium Titanium Vanadium Chromium | Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
o 39.0983 40.0 44.955910 47.867 50.9415 51.9961 54.938049 55.845 58.933200 58.6934 63.546 65.409 69.723 72.64 74.92160 78.96 79.904 83.798
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X 6.5615 6.8281 6.7462 6.7665 7.4340 7.9024 7.8810 7.6398 7.7264 9.3942 5.9993 7.8994 9.7886 9.7524 11.8138 13.9996
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Rubidium m Yitrium Zirconium Niobium | Molybdenum | Technetium [ Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium lodine Xenon
85.4678 88.90585 91.224 92.90638 95.94 (98) 101.07 102.90550 106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.90447 | 131.293
[Kr]5s [Kr]4d5s® [Krj4d?5s? [Krj4d*5s [Kr]4d°5s [Kr]4d°5s’ [Krl4d'5s [Krj4d®5s [Krj4d " Kri4d"ss | [Krad"ss? | (Krad"%5s%5p |[Kridd"%5s%5p? | [Krj4d*5s%5p° | [Krl4d"%5s%5p" | [Krj4d "*5s75p° | [Krldd ' *5s?6p®
6.2173 6.6339 6.7589 7.0924 7.28 7.3605 7.4589 8.3369 7.5762 8.9938 5.7864 7.3439 8.6084 9.0096 10.4513 12.1298
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Symbd G4 < | Lanthanum Cerium  [Praseodymium( Neodymium | Promethium | Samarium Europium | Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium
| 1389055 140.116 | 140.90765 144.24 (145) 150.36 151.964 157.25 158.92534 162.500 | 164.93032 | 167.259 | 168.93421 173.04 174.967
— | [Xelsdes? | [xelafsdes® | [xelaf’ss? | (Xelat'6s® | [Xeldfbs® | (Xelaf®ss® | (Xelaf'6s® | [Xelaf'5des? | [Xelafss® | [Xeldf'’6s? | [Xelaf''6s® | [Xelaf'P6s® | [Xeldf6s? | [Xelaf'*6s® | [Xel4f'“5d6s?
Name Cerium 5.5769 5.5387 5.473 5.5250 5.582 5.6437 5.6704 6.1498 5.8638 5.9389 6.0215 6.1077 6.1843 6.2542 5.4259
_ 140116 89 D,,(90 °r |91 K,,|92 (93 °L.,|94 F |95 °s;, (96 D397 °H:,,|98 @ °L |99 “I3,,[(100 °H,|101 *F5,|102 'S, (103 *P;,?
Atomic, —| : 2 8
Weight! |- [Xel4f5ds s| Ac | Th | Pa Pu | Am | Cm Cf | Es | Fm No | Lr
/ 5.5387~ 5| Actinium Thorium | Protactinium | Uranium | Neptunium [ Plutonium | Americium Curium Berkelium | Californium | Einsteinium | Fermium | Mendelevium [ Nobelium | Lawrencium
- < (227) 232.0381 | 231.03588 | 238.02891 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262)
Ground-state  lonization [Rnj6d7s® | [Rn16d*7s® | [Rnj5f6d7s® | [Rn5r6d7s” | [Rnl5f'6d7s® | [Rnl5f7s” | [Rnlsf7s® | [Rnlsf6d7s® | [Rnlsf7s® | [Rnpsf°7s® | [Rapsf'7s? | [Rnlsf'27s? | [Rpsf°7s® | [Rnlsf*7s? |[Rn]5f"*7s%7p2
Configuration  Energy (eV) 5.17 6.3067 5.89 6.1941 6.2657 6.0260 5.9738 5.9914 6.1979 6.2817 6.42 6.50 6.58 6.65 497

"Based upon e, () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data
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Rubidium 87: Level structure
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40K has inverted hyperfine
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Jin group (JILA)

ARPES analogy BEC of molecules
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8’Rb F=1 at low field
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Spinor BEC’s (Chapman group) for

example
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Three spins! How often do you see THAT with electrons...
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5Rb F=1 quadratic effects
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8’Rb Clock states
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Standard picture

Space dependent coupling
Now we have no time-dependence, but instead space-dependence.

Geometry and initial Hamiltonian
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Exact picture

Geometry and imitial Hamiltonian
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Spin orbit coupling: origin

Momentum representation
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Y.-J. Lin et al Nature (2011)
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Spin orbit coupling: origin

Momentum representation

H_zk:{( (k—=1,1] (k+1,1 )<

Spin 1/2 bosons????
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NOTICE

Written as a “2x2” vector potential, this S-O
coupling 1s VOT non-Abelian (it 1s A.)

However, the Hamiltonian & non-trivial owing
to the Zeeman field along =.
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Spin-orbit coupling

r : . .
Spin-orbit coupling
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Refs.
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Typical data
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Phase diagram I: Large single particle energy

Minimize single particle energy
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Y.-J. Lin et al, Nature (2011)
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Equilibrium: slow

Minimize single particle energy
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Y.-J. Lin et al Nature (2011)

Fraction of condensate

Detuning 6/E;

a Population fraction, Q = 0.6 E;

Metastable populations

b Metastable detuning width
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Effective Hamiltonian for dressed spins

Two Level contact interactions

~ 1 C9 R ~ N2 Co , . ~ ~
Hiny = / Pri (o +2) (p+ )" + 2 (57 = 7) + capun|

mpr= -1, mp= 0 mixture: miscible for % Rb

mF——l
mF—O
mp = +1

Ph.D. Thesis of Ming-Shien Chang
(Chapman group)
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Effective Hamiltonian for dressed spins

Two Level contact interactions

~ 1 i C9 R N2 Co , . ~ ~
H; _—/dSTZ (CO‘|‘ 5) (Py+p1)” + 9 (/%—,0%) -I-Cz,OWT} 3

1 [ C9 R R 2 Co , . ~ ~ A
-2 / Pri | (co+ %) (o + i) + 5 (9 = 02) + (ca+chy) puir |

Spin-orbit term mp= -1, mp= 0 mixture: miscible for 3 Rb
/ QQ mpgrp — —1
C ~ Co)—
T)\L 8
mpep — 0
mp = +1

Ph.D. Thesis of Ming-Shien Chang
(Chapman group)
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Mean field phase diagram with SO coupling

MFET: minimize classical energy

1 C2 2 C2
FyipT =5 /dgr {(CO -+ 5) (py +pp)" + D) (Pi/ — ,0%/) + (62 + Clﬂi) pr P+ 0 (pp — py)}

a Mean field phase diagram b Phase diagram, inset
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Refs.
Y.-J. Lin et al, Nature (2011), C. Wang et al (arXiv:1006.5148), T.-L.. Ho and S. Zhan (arXiv:1007.0650)
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Mean field phase diagram with SO coupling

MFET: minimize classical energy
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Refs.
Y.-J. Lin et al, Nature (2011), C. Wang et al (arXiv:1006.5148), T.-L.. Ho and S. Zhan (arXiv:1007.0650)
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Transition from miscible to immiscible

b Phase diagram, inset
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¢ Miscible to immiscible transition
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Transition from miscible to immiscible
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A quantum phase transition
Previously unexpected

Our MFT prediction
Phase separation at Q2 = 0.19 £/,

Refs.
Y.-J. Lin et al, Nature (2011)
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T.-L. Ho and S. Zhan (arXiv:1007.0650)
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