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Rubidium 87

Solids

Artificially
Prepared

Liquids
Gases

 58
Ce
Cerium

140.116

5.5387

°

Atomic
Number

Symbol

Name

Ground-state
Configuration

Ground-state
Level

Ionization
Energy (eV)

†Based upon 12C.  () indicates the mass number of the most stable isotope. 

Atomic
Weight†

P  E  R  I  O  D  I  C     T  A  B  L  E

Atomic Properties of the Elements

 29
Cu
Copper
63.546

7.7264

 11
Na
Sodium

22.989770

5.1391

 12
Mg

Magnesium
24.3050

7.6462

 13
Al

Aluminum
26.981538

5.9858

 14
Si
Silicon

28.0855

8.1517

 15
P

Phosphorus
30.973761

10.4867

 16
S

Sulfur
32.065

10.3600

 17
Cl

Chlorine
35.453

12.9676

 18
Ar
Argon
39.948

15.7596

 1 2S1/2

H
Hydrogen
1.00794

13.5984

 4
Be
Beryllium
9.012182

9.3227

 37
Rb
Rubidium
85.4678

4.1771

 55
Cs
Cesium

132.90545

3.8939

 42
Mo

Molybdenum
95.94

7.0924

 41
Nb
Niobium

92.90638

6.7589

 86
Rn
Radon
(222)

10.7485

 74
W

Tungsten
183.84

7.8640

 43
Tc

Technetium
(98)

7.28

 75
Re
Rhenium
186.207

7.8335

 44
Ru

Ruthenium
101.07

7.3605

 76
Os
Osmium
190.23

8.4382

 45
Rh
Rhodium

102.90550

7.4589

 77
Ir

Iridium
192.217

8.9670

 46
Pd

Palladium
106.42

8.3369

 78
Pt

Platinum
195.078

8.9588

 47
Ag

Silver
107.8682

7.5762

 79
Au

Gold
196.96655

9.2255

 48
Cd

Cadmium
112.411

8.9938

 80
Hg
Mercury
200.59

10.4375

 60
Nd

Neodymium
144.24

5.5250

 62
Sm
Samarium

150.36

5.6437

 63
Eu

Europium
151.964

5.6704

 64
Gd

Gadolinium
157.25

6.1498

 65
Tb
Terbium

158.92534

5.8638

 61
Pm

Promethium
(145)

5.582

 66
Dy

Dysprosium
162.500

5.9389

 67
Ho
Holmium

164.93032

6.0215

 68
Er
Erbium
167.259

6.1077

 69
Tm
Thulium

168.93421

6.1843

 49
In
Indium

114.818

5.7864

 50
Sn

Tin
118.710

7.3439

 51
Sb

Antimony
121.760

8.6084

 52
Te

Tellurium
127.60

9.0096

 53
I

Iodine
126.90447

10.4513

 81
Tl

Thallium
204.3833

6.1082

 82
Pb

Lead
207.2

7.4167

 83
Bi

Bismuth
208.98038

7.2855

 84
Po

Polonium
(209)

8.414

 85
At

Astatine
(210)

 58
Ce
Cerium
140.116

5.5387

 59
Pr

Praseodymium
140.90765

5.473

 70
Yb

Ytterbium
173.04

6.2542

 90
Th
Thorium

232.0381

6.3067

 92
U

Uranium
238.02891

6.1941

 93
Np

Neptunium
(237)

6.2657

 94
Pu

Plutonium
(244)

6.0260

 95
Am
Americium

(243)

5.9738

 96
Cm

Curium
(247)

5.9914

 91
Pa

Protactinium
231.03588

5.89

 97
Bk

Berkelium
(247)

6.1979

 98
Cf

Californium
(251)

6.2817

 99
Es

Einsteinium
(252)

6.42

 100
Fm
Fermium

(257)

6.50

 101
Md

Mendelevium
(258)

6.58

 102
No
Nobelium

(259)

6.65

° ° °

° °

° °

°

°

° ° ° ° ° ° °
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°

°

° °

° °

° ° ° °°

 105  107 106  108  109  111 110  112
Db
Dubnium

(262)

Sg
Seaborgium

(266)

Hs
Hassium

(277)

Bh
Bohrium

(264)

Mt
Meitnerium

(268)

Uun
Ununnilium

(281)

Uuu
Unununium

(272)

°

1s

 114  116

 3

1s22s

Li
Lithium
6.941

5.3917

 10
Ne

Neon
20.1797

21.5645

 2
He
Helium

4.002602

24.5874

 9
O

Oxygen
15.9994

13.6181

 8
F

Fluorine
18.9984032

17.4228

 7
N

Nitrogen
14.0067

14.5341

 6
C

Carbon
12.0107

11.2603

 5
B

Boron
10.811

8.2980

 57
La

Lanthanum
138.9055

5.5769

 89
Ac
Actinium

(227)

5.17

 71
Lu
Lutetium
174.967

5.4259

 103
Lr

Lawrencium
(262)

4.9 ?

 87
Fr

Francium
(223)

4.0727

 88
Ra
Radium
(226)

5.2784

 104  ?

Rf
Rutherfordium

(261)

6.0 ?

 72
Hf

Hafnium
178.49

6.8251

 40
Zr

Zirconium
91.224

6.6339

 39
Y

Yttrium
88.90585

6.2173

 38
Sr

Strontium
87.62

5.6949

 56
Ba
Barium

137.327

5.2117

 73
Ta

Tantalum
180.9479

7.5496

 54
Xe
Xenon

131.293

12.1298

 19
K

Potassium
39.0983

4.3407

 20
Ca
Calcium
40.078

6.1132

 21
Sc

Scandium
44.955910

6.5615

 22
Ti

Titanium
47.867

6.8281

 30
Zn

Zinc
65.409

9.3942

 31
Ga
Gallium
69.723

5.9993

 32
Ge

Germanium
72.64

7.8994

 33
As
Arsenic

74.92160

9.7886

 34
Se

Selenium
78.96

9.7524

 35
Br

Bromine
79.904

11.8138

 36
Kr
Krypton
83.798

13.9996

 23
V

Vanadium
50.9415

6.7462

 24
Cr

Chromium
51.9961

6.7665

 25
Mn

Manganese
54.938049

7.4340

 26
Fe

Iron
55.845

7.9024

 27
Co
Cobalt

58.933200

7.8810

 28
Ni
Nickel

58.6934

7.6398

Uub
Ununbium

(285)

Uuq
Ununquadium

(289)

Uuh
Ununhexium

(292)
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2S1/2

1s22s2

2S1/2
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[Ne]3s2

1S0

[Ne]3s

1S0

1S0

2S1/2
1S0

2S1/2
1S0

2S1/2
1S0

[Ar]4s2[Ar]4s

[Kr]5s2[Kr]5s
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1G4
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3F2
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5D4
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4F9/2

[Ar]3d74s2

4F9/2

[Kr]4d85s

3F4
2S1/2

5F5

[Kr]4d75s

5D4

[Xe]4f145d66s2

4F9/2

[Xe]4f145d76s2

2S1/2

[Kr]4d105s

1S0

[Kr]4d10

3D3

[Xe]4f145d96s

2S1/2

[Xe]4f145d106s

1S0
2P1/2

1S0

[Kr]4d105s2 [Kr]4d105s25p

[Xe]4f145d106s2

1S0

[Hg]6p

2P1/2

1s22s22p

1S0

1s2

3P0

1s22s22p2

4S3/2

1s22s22p3

3P2
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2P3/2
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1S0

1s22s22p6
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3P0
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2P3/2
1S0

3P0
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[Hg]6p2 [Hg]6p3 [Hg]6p4 [Hg]6p5 [Hg]6p6

2D3/2

[Xe]4f145d6s2

1S0

[Xe]4f146s2

[Ne]3s23p [Ne]3s23p2 [Ne]3s23p3 [Ne]3s23p4 [Ne]3s23p5 [Ne]3s23p6
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2D3/2
1G4

2D3/2
3F2

4I9/2
5I4

5I8
4I15/2

°4I15/2
5I8

6H5/2
7F0

8S7/2
9D2

6H15/2
2F7/2

3H6

2P1/2
1S0

2F7/2
3H6

9D2
6H15/2

7F0
8S7/2

6L11/2
5L6

4K11/2
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VIIB
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Physics
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15
VA

16
VIA

17
VIIA

18
VIIIA

Frequently used fundamental physical constants

1 second = 9 192 631 770 periods of radiation corresponding to the transition

speed of light in vacuum 299 792 458  m s!1

Planck constant 6.6261 × 10!34 J s 
elementary charge
electron mass

proton mass
fine-structure constant 1/137.036
Rydberg constant 10 973 732  m!1

Boltzmann constant 1.3807 × 10!23 J K !1

c
h
e
me

k

For the most accurate values of these and other constants, visit physics.nist.gov/constants

between the two hyperfine levels of the ground state of 133Cs 
(exact)

0.5110  MeV

13.6057  eV

R
R c
R hc

( /2 )

mec
2

mp

1.6022 × 10!19 C 
9.1094 × 10!31 kg

1.6726 × 10!27 kg 

3.289 842 × 1015 Hz
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Rubidium 87: Level structure
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corresponding to P 0 0.14. The strength of
the two-body interactions is characterized by the
dimensionless parameter kFa, where kF is the
Fermi wave vector and a is the s-wave scattering
length. For a field of 830 G, kFa is greater than
10, corresponding to a unitarity limited interac-
tion. We contend that the gas has separated into
a uniformly paired, unpolarized inner core sur-
rounded by a shell of the excess, unpaired state
k1À atoms. In this case, the distribution of the
difference, k1À – k2À (Fig. 1), represents the
location of these unpaired state k1À atoms.

Axial profiles of a sequence of images (Fig.
2) correspond to increasing values of P, again
for 830 G. These axial profiles are the result
of integrating the column density over the re-
maining radial coordinate. They are insen-
sitive to the effect of finite imaging resolution
in the radial dimension as well as to probe-
induced radial heating of the second image
in the sequence (20). On the left of Fig. 2
are distributions for both states k1À and k2À,
whereas the right side shows the corresponding
difference distributions. Also shown in Fig.
2 are fits to a noninteracting T 0 0 integrated
Thomas-Fermi (T-F) distribution for fermions,

A 1j z2

R2

! "5
2

, where A and R are adjustable fitting

parameters and z is the axial position. Although
the distributions are expected to differ somewhat
from that of a noninteracting Fermi gas, we find
that the fits are qualitatively good and provide a
useful measure of the spatial size of the
distributions. For P 0 0 (Fig. 2A), the two spin
components have identical distributions. We
previously found that the gas was paired under
the same conditions (17). As P increases (Fig.
2B), the peak height and width of the state k2À
distributions initially diminish with respect to
state k1À, but their shapes are not fundamentally
altered. When the polarization is increased
beyond a critical value, however, the shapes
of the two clouds become qualitatively different
(Fig. 2C): The inner core, reflected by the
distribution of the k2À atoms, is squeezed and
becomes taller and narrower. This narrowing is
noticeable in thewings of the state k2À distribution
in comparison with the T-F fit. The squeezing of
the state k2À distribution is accompanied by the
excess, unpaired state k1À atoms being expelled
from the center of the trap. These unpaired atoms
form a shell that surrounds the inner core. As P
approaches 1 (Fig. 2D), the contrast in the center
hole in the difference distribution decreases
because of the contribution to the axial density
of unpaired atoms in the shell surrounding the
core. The observation of difference distributions
with a center hole and two peaks on either side
is consistent with phase separation. Although
more exotic redistributions of atoms cannot be
ruled out, a separation between a uniformly
paired phase and the excess unpaired atoms is
the simplest explanation and is consistent with
theoretical predictions (6–8).

To gain a more quantitative understanding
of the phase separation as a function of P, we
plot the ratio R/RTF against P, where RTF 0

2kBTF
mwz

2

! "1
2

is the axial T-F radius for noninteracting

fermions (23) and m is the atomic mass, wz 0
2puz, and TF is calculated for each state from
the measured numbers N1 and N2. Figure 3 shows
the results for all of the 830 G data. At a critical
polarization Pc 0 0.09 T 0.025, R/RTF for states
k1À and k2À diverges in opposite directions from
its value at small P. R/RTF for state k2À, which
corresponds to the distribution of the pairs, de-

creases continuously to È0.4 for the maximum
attained polarization of P È 0.86. For state k1À,
R/RTF jumps from its initial value to near unity
at the critical polarization. Because P 0 1 cor-
responds to a noninteracting gas, one expects
R/RTF to approach unity in this limit.

In the case of P , 0, the observation that the
axial extent of the paired cloud is smaller than that
of a noninteracting Fermi gas can be explained by
the universal energy of strongly interacting paired
fermions at the unitarity limit, where kFkak d 1
(24). In this limit, the chemical potential of the gas
is believed to have the universal form EF(1þ b)½,
where b is a universal many-body parameter that

Fig. 2. Axial density profiles at 830 G. For
the curves on the left, the blue data
correspond to state k1À and the red data
correspond to state k2À, whereas the green
curves on the right show the difference
distributions, k1À – k2À. The axial density
measurements are absolute and without
separate normalization for the two states.
The solid lines on the left curves are fits to a
T-F distribution for fermions, where the
fitted parameters are A and R. (A) P 0
0.01, N1 0 6.4 " 104; (B) P 0 0.09, N1 0
1.0 " 105; (C) P 0 0.14, N1 0 8.6 " 104;
and (D) P 0 0.53, N1 0 6.8 " 104. The
state k2À distributions reflect the distribu-
tion of pairs, whereas the difference
distributions show the unpaired atoms.
Phase separation is evident in (C) and
(D). The profiles in (C) are derived from the
images given in Fig. 1.

Fig. 1. In situ absorption
images showing phase
separation at a field of
830 G. A false-color scale
is used to represent the
column density. The trap-
ping frequencies are ur 0
350 Hz and uz 0 7.2 Hz.
These images correspond
to P 0 0.14. (A) Majority
spin state, k1À, with N1 0
8.6 " 104. (B) Minority
spin state, k2À, with N2 0
6.5 " 104. (C) Difference

distribution, k1À – k2À, corresponding to the excess unpaired k1À atoms. These excess atoms reside in a shell
surrounding an inner core of unpolarized pairs. We observe that the excess state k1À atoms preferentially
reside at large z, whereas relatively few occupy the thin radial shell at small z. We speculate that this may be
a consequence of the high aspect ratio trapping potential. (A) and (B) were obtained sequentially by using
probe laser beams of different frequencies. Probe-induced radial heating of the second image in the
sequence (state k1À, in this case), caused by off-resonant excitation by the first probe, produces a slight
reduction in peak height (20). As a result, the difference distribution is slightly negative at the center. The
size of each image in the object plane is 1.41 mm horizontally and 0.12 mm vertically. The displayed
aspect ratio has been rescaled for clarity.
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Hulet (Rice)

Ketterle (MIT)

broad Feshbach resonance at 834G enhances the interactions
between the two spin states. Our sample was confined in a three-
dimensional harmonic trap with cylindrical symmetry. The in situ
density distributions of the majority (spin ") and minority (spin #)
components were determined using a phase-contrast imaging tech-
nique19 (Fig. 2). We obtained the low-noise profiles ñ by averaging
the column density distribution along the equipotential line and
determined the three-dimensional density profiles n(r) using the
inverse Abel transformation of the column densities ñ(r) (see
Methods Summary). Most of our measurements were performed at
a total population imbalance of d< 50%, where d5 (N"2N#)/
(N"1N#) refers to the total numbers of atoms in the sample, N"
and N# of the spin " and # components, respectively.

Figure 3 displays the radial profiles of the densities n",#(r) and the
corresponding spin polarization s(r) for various temperatures. The
discontinuity in the spin polarization, clearly shown at very low
temperatures, demonstrates the phase separation of the inner super-
fluid of low polarization and the outer normal gas of high polariza-
tion. At low temperature, the core radius Rc is determined as the kink
(and/or peak) position in the column density difference profile. At
high temperature (but still in the superfluid regime), the discontinu-
ity in s(r) disappears. At our lowest temperature, the radii of the
minority cloud and the core region were measured as R#5 0.73(1)R"
and Rc5 0.430(3)R" (at d5 44(4)%), respectively, and these values
agree with recent theoretical calculations10,25 within the experimental
uncertainties due to the determination of d. Here, R" is the radius of

the majority cloud, and the uncertainty of the final digit is indicated
by parentheses.

We determined temperature from the in situ majority wing pro-
files. The outer part of the majority component, forming a non-
interacting Fermi gas, fulfils the definition of an ideal thermometer,
namely a substance with exactly understood properties in contact
with the target sample. This new in situmethod avoids the modifica-
tion of the ideal gas profile caused by the collision with the inner core
during ballistic expansion (ref. 18, see Supplementary Information).
The outer part of the averaged column density difference profile
(r.R#) was fitted to a finite temperature Fermi–Dirac distribution
in a harmonic trap (Fig. 4) and the relative temperature T 0:T=TF0

was determined, where kBTF0~B2(6p2n0)2=3=2m is the Fermi energy
of the non-interacting Fermi gas, which has the same density distri-
bution in the outer region as the majority cloud (n0 is the central
density of the non-interacting Fermi gas at zero temperature). We
verified that anharmonicity of the trapping potential does not affect
the fitted temperature (see Methods).

The critical lines of the phase diagram of a homogeneous spin-
polarized Fermi gas were obtained by determining the local temper-
ature and spin polarization at the phase boundary. The local relative
temperature T 0

local:T=TF: was derived from the local density n" (Rc)
according toT 0(Rc)~T=TF0|(n0=n:(Rc))

2=3. Because we observe no
jump in the majority density within our resolution, TF" is well-
defined at the boundary. The critical polarizations sc and ss were
measured as sc5 s(Rc) and ss5s(Rc2 0.05R") (this criterion for ss
was more robust than a fitting procedure, but excludes the possibility
that ss will be equal to sc at high temperature. Therefore, the mea-
sured ss should be regarded as a lower bound for the polarization of
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Figure 1 | Schematic of spatial structure of a strongly interacting Fermi gas
in a harmonic trap. a, A two-component (spin " and #) Fermi mixture is
confined in an external potentialV(r) / r2 with the chemical potential m"0,#0
of each spin component (dm# is the shift for the spin # component owing to
interactions). b, Density distributions of the majority component n"(r) (red
line) and the minority component n#(r) (blue line). c, Spin polarization
s(r)5 (n"2 n#)/(n"1n#). At zero temperature, the sample has a three-layer
radial structure: (I), the core region (0# r,Rc) of a fully paired superfluid
with n"5n#; (II), the intermediate region (Rc, r,R#) of a partially
polarized normal gas; and (III), the outer region (R#, r,R") of a fully
polarized normal gas. The critical polarization sc (or ss) is defined as the
minimum (or maximum) spin polarization of the normal (or superfluid)
region. The non-interacting case is shown in the insets. The insets have the
same axes as the main figure.
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Figure 2 | Double in situ phase-contrast imaging of a trapped Fermi
mixture. Two phase-contrast images of one sample were taken using
different probe frequencies of the imaging beam, measuring the density
difference nd15 n"2 n# (a) and the weighted density difference nd25 0.76
n"2 1.43n# (b), respectively. The images show the two-dimensional
distribution of the column density difference, ~nnd1,2(x,z):

Ð
nd1,2(r)dy,

owing to the line-of-sight integration. The field of view for each image is
150mm3 820mm. c, The distributions of the column density difference ñd1
(black line) and ñd2 (red line) along the central line (the dashed lines in a and
b). The profiles of the integrated linear density difference,
!nnd1,z:

Ð
~nnd1(x,z)dx (d) and !nnd1,x:

Ð
~nnd1(x,z)dz (e), show the identical flat-

top feature except scaling. The aspect ratio of the trapping potential was
l5 6.15, the majority atom number was N"5 5.9(5)3 106, the population
imbalance was d5 44(4)%, and the relative temperature was
T95T/TF05 0.03(1) (see text for definitions).
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Solomon (ENS)The equation of state of ultracold Bose and Fermi gases: a few examples 4

z

x

y

atom cloud
probe beam

camera chip

pressure

Figure 1. Scheme of the local pressure measurement: the absorption of a probe beam
propagating along the y direction provides a 2D image on the CCD camera. Integration
of this image along x provides the doubly-integrated density profile n(z) and, using
equation (1), the pressure profile along the z axis.

that the wings of the pressure profile match the second-order virial expansion [22] (see

Fig.2a):

P (µ, T ) =
2kBT

λ3
dB(T )

(

eµ/kBT +
4

3
√
2
e2µ/kBT + . . .

)

. (3)

For colder clouds, the signal-to-noise ratio is not good enough, in the region where (3) is

valid, to extract µ0 using the same procedure. We thus rather use the equation of state
determined from all images previously treated as a reference, since it is accurate on a

wider parameter range than (3) (see Fig.2b). We then iterate this procedure at lower

and lower temperatures, eventually below the superfluid transition. By gathering the

data from all images and statistical averaging, we obtain a low-noise equation of state

in the range 0.02 < ζ < 5 (see Fig.3a).

3.2. Canonical equation of state

In [2] a canonical equation of state E(n, T ) expressing the energy E as a function of

density and temperature was measured using fits of absorption images taken after a

BEC- BCS Crossover physics
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0 100 200 300 400 500

�1�109

�5�108

0

5�108

1�109

Field �G�

En
er
gy
�Hz�

40K, 210 G Feshbach Labeled

F=9/2

F=7/2

mF=-9/2
mF=-7/2

40K has inverted hyperfine

Tuesday, December 13, 2011



ARPES analogy
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Fig. 2. Single-particle excitation spectrum obtained using photoemission
spectroscopy for ultracold atoms. Data is for a strongly interacting Fermi gas where
1/k0

F a = 0 and T ≈ Tc. Plotted is an intensity map of the number of atoms out coupled
to a weakly-interacting spin state as a function of the single-particle energy Es and wave
vector k. The black line is the expected dispersion curve for an ideal Fermi gas. The
white points (*) mark the center of each fixed energy distribution curve. The Fermi wave
vector k0

F is 8.6±0.3µm−1. The white line is a fit of the centers to a BCS-like dispersion.

a function of Es and k) measured for the strongly interacting Fermi gas. In

the intensity map, the observed energy width of the data is larger than the

measurement resolution and can be caused by a finite lifetime of the single-

particle excitations. The black line shows the dispersion for free particles,

E = �2k2/2m. The white points show the measured dispersion curve, which

was obtained by fitting a Gaussian to the intensity vs Es for each value of k.

This dispersion curve shows a back-bending behavior that is characteristic

of a pairing gap.

One of the aspects of PES that makes it a useful probe of microscopic

behavior is that it measures the spectral function, which is a quantity that

is directly predicted by many-body theories.30 The spectral function for the

Jin group (JILA)

BEC of molecules

strongly anisotropic system. Thus for the relatively short timescale
of the experiments reported here we may attain only local equili-
brium in the axial direction28.
To study the resulting atom–molecule mixture after the mag-

netic-field sweep, we measure the momentum distribution of both
the molecules and the residual atoms using time-of-flight absorp-
tion imaging. After typically 10–20ms of expansion, we apply a
radio frequency (r.f.) pulse that dissociates the molecules into free
atoms in the mf ¼ 25/2 and mf ¼ 29/2 spin states11. Immediately
after this r.f. dissociation pulse, we take a spin-selective absorption
image. The r.f. pulse has a duration of 140 ms and is detuned 50 kHz
beyond the molecule dissociation threshold so that it does not affect
the residual unpaired atoms in the mf ¼ 27/2 state. We selectively
detect the expanded molecule cloud by imaging atoms transferred
by the r.f. dissociation pulse into the previously unoccupied
mf ¼ 25/2 state. Alternatively, we can image only the expanded
atom cloud by detecting atoms in the mf ¼ 27/2 spin state.
Close to the Feshbach resonance, the atoms and molecules are

strongly interacting with effectively repulsive interactions. As
shown by Petrov et al. (ref. 27 and references therein), the scattering
length for atom–molecule and molecule–molecule collisions close
to the Feshbach resonance are 1.2a and 0.6a respectively. During
the initial stage of expansion, the positive interaction energy is
converted into additional kinetic energy of the expanding cloud.
Therefore the measured momentum distribution is very different
from the original momentum distribution of the trapped cloud. In
order to reduce the effect of these interactions on themolecule time-
of-flight images, we use the magnetic-field Feshbach resonance to

control the interparticle interaction strength during expansion. We
can significantly reduce the interaction energy momentum kick by
rapidly changing the magnetic field before we switch off the optical
trap for expansion. The field is lowered typically by 4G in 10 ms. At
this magnetic field further away from the resonance, a is reduced to
,500a0. We find that this magnetic-field jump results in a loss of
typically 50% of the molecules, which we attribute to the reduced
molecule lifetime away from the Feshbach resonance.

Below an initial temperature of 0.17TF, we observe the sudden
onset of a pronounced bimodal momentum distribution for the
molecules. Figure 1 shows such a bimodal distribution for an
experiment starting with an initial temperature of 0.06TF ; for
comparison, we also show the resulting molecule momentum
distribution for an experiment starting at 0.19TF. The bimodal
momentum distribution is a striking indication that the cloud of
weakly bound molecules has undergone a phase transition to a
BEC29–31.

To obtain thermodynamic information about the molecule
cloud, we fitted the momentum distributionwith a two-component
fit. The fit function is the sum of an inverted parabola (describing
the Thomas–Fermi momentum distribution of a bosonic conden-
sate) and a gaussian momentum distribution (describing the non-
condensed component of the molecule cloud). In Fig. 2 the
measured condensate fraction is plotted as a function of the fitted
temperature of the thermal component in units of the critical
temperature for an ideal Bose gas, Tc ¼ 0:94ðNn2r nzÞ1=3h=kB. Here
N is the total number of molecules when there is no change of the
magnetic field for the expansion. Note that this measurement may
underestimate the original condensate fraction owing to loss of
molecules during expansion. From Fig. 2 we determine an actual
critical temperature for the interacting molecules and for our trap
geometry of 0.8 ^ 0.1T c. Such a decrease of the critical temperature
relative to the ideal gas prediction is expected owing to repulsive
interactions in a trapped gas32.

We find that the creation of a BEC of molecules requires that the
Feshbach resonance be traversed sufficiently slowly. This is illus-
trated in Fig. 3, where the measured condensate fraction is plotted
versus the ramp time across the Feshbach resonance, starting with a
Fermi gas at a temperature 0.06TF. Our fastest sweeps result in a
much smaller condensate fraction, whereas the largest condensate
fraction appears for a B-field sweep of 3–10ms. For even slower
magnetic-field sweeps, we find that the condensate fraction slowly
decreases. We attribute this effect to a finite lifetime of the con-
densate. Note that the timescale of the experiment is short com-
pared to the axial trap frequency. Therefore the condensate may
not have global phase coherence in the axial direction28. The inset of

Figure 1 Time-of-flight images of the molecular cloud, taken with a probe beam along the

axial direction after 20ms of free expansion. Data are shown for temperatures above and

below the critical temperature for Bose–Einstein condensation. a, Surface plot of the
optical density for a molecule sample created by applying a magnetic-field sweep to an

atomic Fermi gas with an initial temperature of 0.19TF (0.06TF) for the left (right) image.

Here the radial trapping frequency of the optical trap was 350 Hz (260 Hz). When we start

with the lower initial temperature of the fermionic atoms (right) and ramp across the

Feshbach resonance from B ¼ 202.78 G to 201.54 G in 10ms, the molecules form a

BEC. During expansion the interparticle interaction was reduced by rapidly moving the

magnetic field 4 G further away from the Feshbach resonance. The total molecule number

was 470,000 (200,000) for the left (right) picture. The surface plots are the averages of

ten images. b, Cross-sections through images corresponding to the parameters given
above (dots), along with bimodal surface fits (lines). The fits yield no condensate fraction

and a temperature of T ¼ 250 nK ¼ 0.90Tc for the left graph, and a 12% condensate

fraction and a temperature of the thermal component of T ¼ 79 nK ¼ 0.49Tc for the right

graph. Here, Tc is the calculated critical temperature for a non-interacting BEC in thermal

equilibrium.

Figure 2 Molecular condensate fraction N0/N versus the scaled temperature T/Tc. The

temperature of the molecules is varied by changing the initial temperature of the fermionic

atoms before the formation of the molecules. All other parameters are similar to those

described in Fig. 1 legend. We observe the onset for Bose–Einstein condensation at a

temperature of ,0.8Tc; the dashed line marks zero condensate fraction.

letters to nature
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Spinor BEC’s (Chapman group) for 
example
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Figure 7.1: Coherent spin mixing of spin-1 Bose condensate in an optical trap. Coherent

spin mixing producing oscillations in the populations of the F = 1, mF = 0,±1 spin states

of
87

Rb condensates confined in an optical trap starting from a superposition of condensate

spin components at t = 0 that is subsequently allowed to evolve freely. a) Schematic indi-

cates fundamental spin mixing process. b) Absorptive images of the condensates for different

evolution times. In this example, the initial relative populations are ρ(1,0,−1) � (0, 3/4, 1/4).

The condensates are probed 18 ms after release from the trap, and, to separate the spin

components for imaging, a weak magnetic field gradient is applied for 3 ms during expan-

sion of the condensates. The field of view is 600 µm × 180 µm. c) Spin populations vs.

evolution time for the same initial population configuration showing four clear oscillations.

The damping of the oscillations is due to the breakdown of the single mode approximation

readily apparent in the t = 140 ms absorptive image. Here the dotted, solid, and dot-dashed

lines represent the populations in mF = 1, 0 and -1 states. Inset shows the measured oscil-

lation period versus the initial population of the 0 state for different initial superpositions of

mF = 0, -1 states, which compares well with the theoretical prediction [114]. The (typical)

error bars shown are the standard deviation of three repeated measurements.

98

Three spins!  How often do you see THAT with electrons...
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87Rb F=1 quadratic effects
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87Rb Clock states

0 1 2 3 4 5

�2000

�1000

0

1000

2000

3000

Field �G�

dE
�dB�H

z�G�

Rb

0 1 2 3 4 5

700000

700500

701000

701500

702000

Field �G�

dE
�dB�H

z�G�

Rb

0 200 400 600 800 1000 1200

�1�106

�500000

0

500000

1�106

Field �G�

dE
�dB�H

z�G�

Rb

2,0

1,0

1,-1

2,1

Tuesday, December 13, 2011



Tuesday, December 13, 2011



Standard picture

Space dependent coupling
Now we have no time-dependence, but instead space-dependence.

Geometry and initial Hamiltonian

Tuesday, December 13, 2011



Exact picture

Work in the momentum basis!

Geometry and initial Hamiltonian

Numerically solve without approximation
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Spin orbit coupling: origin

Momentum representation

H =
�

k

��
�k − 1, ↑ | �k + 1, ↓ |

�� (k̃x − 1)2 + δ/2 ΩR/2
ΩR/2 (k̃x + 1)2 − δ/2

��
|k − 1, ↑�
|k + 1, ↓�

��

Geometry Levels

References
Y.-J. Lin et al Nature (2011)
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Spin 1/2 bosons????

Spin orbit coupling: origin

Transform to
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However, the Hamiltonian is non-trivial owing
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Momentum representation
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52

b. Realized SO Zeeman Field

Figure 4.1: A schematic illustration of SO coupling using ultracold atoms. a. Physical
geometry of laser beams, and two levels coupled by lasers. b. Resulting SO field as a
function of x and y momentum.

After a spatial rotation of π/4 about ẑ we arrive at the Hamiltonian realized in our experi-

ment

H =
�2k2

2m
1̌ +

δ

2
σ̌z + 2αkxσ̌y.

We construct this Hamiltonian using a pair of Raman lasers that couple two internal atomic

states |F = 1,mF = −1� and |F = 1,mF = 0�. Together these two states form a two-level

pseudo-spin system with SO coupling.

The two Raman lasers detuned by the ω = 2π × 6.5 MHz linear Zeeman shift between

the target levels produce a rapidly moving lattice potential Ω(x, t) = Ω sin (2kRx− ωt) that

couple together the two atomic levels |a� and |b�. After having made the rotating wave

approximation (Chapter 1.4.1) the atomic Hamiltonian is

H =
�2
2m



 k̂2 0

0 k̂2



+
Ω

2



 0 i exp [i2kRx̂]

−i exp [−i2kRx̂] 0



 .

Spin-orbit coupling

51

Chapter 4

Spin orbit coupled systems

Spin orbit coupling is an essential part of many condensed matter systems. Here I study how

to realize spin-orbit (SO) coupled hamiltonians using ultracold atoms, via Raman dressed

states. This is an intellectual continuation of the earlier discussion of artificial magnetic

fields in Chapter 3.

4.1 Introduction

Spin-orbit (SO) coupling – the interaction between motional and internal degrees of

freedom – is ubiquitous in physical systems from the fine-structure of atoms, to perturbative

and now dramatic effects in condensed matter systems. A general expression of a SO coupled

two level system is

H =
�2k2

2m
1̌ +

δ

2
σ̌z + α (kxσ̌y − kyσ̌x) + β (kxσ̌x − kyσ̌y) .

α gives the strength of the Rashba coupling; β yields the linear Dresselhaus coupling; and δ

produces a Zeeman splitting between the two spin components []. Here we realize an example

of this Hamiltonian using a system of ultracold atoms where a pair of “Raman” laser beams

couple the internal and motional degrees of freedom giving a form of this Hamiltonian with

α = β. With this replacement

H =
�2k2

2m
1̌ +

δ

2
σ̌z + α (kx − ky) (σ̌x + σ̌y) .

Spin-orbit coupling

Equal Rashba and Dresselhaus: 

Refs. 
T. D. Stanescu and B. Anderson and V. Galitski PRA (2008)
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Phase diagram I: Large single particle energy

Minimize single particle energy

Refs. 
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Effective Hamiltonian for dressed spins

Two Level contact interactions

mF = -1, mF = 0 mixture: miscible for 87Rb

Ph.D. Thesis of Ming-Shien Chang
(Chapman group)
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Effective Hamiltonian for dressed spins

Two Level contact interactions

Spin-orbit term mF = -1, mF = 0 mixture: miscible for 87Rb

Ph.D. Thesis of Ming-Shien Chang
(Chapman group)
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Mean field phase diagram with SO coupling

MFT: minimize classical energy
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Mean field phase diagram with SO coupling

MFT: minimize classical energy
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Transition from miscible to immiscible
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Transition from miscible to immiscible
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