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Condensed matter and dilute ultracold gases

Normal matter (electrons in
ionic lattice)

Tightly packed atoms

Complicated interactions

Fixed parameters

”Artificial” matter (atoms in
optical lattices)

108 times lower density

Tunable interactions

Controllable parameters

M. Lewenstein et al., Adv. Phys. 56, 243 (2007)



Condensed matter and dilute ultracold gases



Paths towards quantum magnetism

Anisotropic-XXZ Heisenberg Hamiltonian:
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Fermions in harmonic traps

Ultracold polar molecules in optical lattices

Trapped ions

Bosons in optical lattices (number or spin sector)

G. Jo et al., Science, 325, 1521 (2009)
A. V. Gorshkov et al., Phys. Rev. Lett., 107, 115301 (2011)
K. Kim et al., Nature, 465, 590 (2010)
J. Simon et al., Nature, 472, 307 (2011)
L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:
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Tunable experimental parameters:

λµz =
J2µ↑ + J2µ↓

2U↑↓
−

J2µ↑
U↑
−

J2µ↓
U↓

λµ⊥ =
Jµ↑Jµ↓
U↑↓

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



The necessary ingredients towards quantum magnetism

Thermometry for the Mott state

Reliable cooling

Diagnostics of ordering

Spin-interactions between nearest neighbors



Spin-gradient thermometry in optical lattices-Theory

Mean spin 〈s〉 as a function of
position xi :

〈s〉 = tanh

(
−∆µσB (xi )

2kBT

)
Low T High T

D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)
A. M. Rey, Physics, 2, 103 (2009)



Experimental procedure

Evaporate to BEC in optical trap

Prepare 50%− 50% spin mixture with nonadiabatic sweep

Spin states for 87Rb

We use 87Rb in a quasi two-level scheme with ν = 6.834GHz .
|F = 1,mF = −1〉 ≡ | ↑〉
and |F = 2,mF = −2〉 ≡ | ↓〉.

Apply gradient and evaporate further

Load atoms in a 3D lattice

Image spin distribution in 2 shots



Spin-gradient thermometry in optical lattices-Experiment

Large dynamic range from 500nK to 200pK

Works deep in the Mott insulator regime

D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)



Spin-gradient thermometry in optical lattices-Experiment

Higher ∇|~B| leads to narrower mixed region

The spin-mixed region shrinks for colder samples



Adiabatic demagnetization cooling-Theory

One each lattice site i -assuming that J << U -the energy of the
spin configuration will be:
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D. M. Weld et al., Phys. Rev. A, 82, 051603(R) (2010)



Adiabatic demagnetization cooling-Theory

Isentropic/adiabatic demagnetization leads to cooling.

Extremely low temperatures can be achieved



Experimental ”phase space”

Spin temperatures for
slow spin relaxation

Adiabatic
demagnetization
cooling for fast spin
relaxation

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Spin temperatures

For slow spin-relaxation times the spin profile is ”frozen”

The lowest/highest spin temperatures have been reached

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Adiabatic demagnetization cooling-Experiment

Adiabatically ”demagnetize” our sample by lowering ∇|~B|
Load the atoms in the lattice

Cooling?



Adiabatic demagnetization cooling-Experiment

The width of 〈s〉 is always below the isotherm Ti = 6.3nk



Adiabatic demagnetization cooling-Experiment

Record low temperatures for an equilibrated gas

Entropy redistribution between spin and kinetic degrees of
freedom leads to cooling

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Cooling from the point of view of entropy redistribution

Mixed-occupation numbers between Mott shells carry high
entropy

Adiabatic reversible ”demagnetization” redistributes entropy
to the spin-mixed region

D. M. Weld et al., Phys. Rev. A, 82, 051603(R) (2010)



Bragg scattering from a crystal of ultracold atoms

Antiferromagnet

T. A. Corcovilos et al., Phys. Rev. A, 81, 013415 (2010)



Bragg scattering from a crystal of ultracold atoms

nλ = 2dsinθ

d = 532nm, λ = 780nm, θ = 47◦

Bragg for |F = 2,mF = −2〉

The atoms are in the lowest vibrational state

H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Bragg as a probe of position spread

Debye-Waller factors:
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Bragg as a probe of momentum spread

For the ground state of a
harmonic oscillator:

(∆x(t))2 = (∆x)2 +
(∆p)2

m2
t2,

Earlier experiments:

(∆p)2

m
= kBT

But here:

(∆x)2(∆p)2 = ~2/4

Bragg intensity IBragg :

IBragg ∝ exp(−(∆p)2K 2

2m2
t2)

Heisenberg uncertainty limited wave functions

M. Weidemller et al., Phys. Rev. Lett., 75, 4583 (1995)
G. Birkl et al., Phys. Rev. Lett., 75, 2823 (1995)
H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Atomic Talbot effect

Bragg reflection: coherent light incident on periodically modulated
atom density distribution. No need for atomic phase coherence.

What happens in the case of an evolving coherent matter wave?

Ψ(x , t) =
n=+∞∑
n=−∞

cnexp

[
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2

For n = 1 the Talbot revivals
occur:

trevivals =
mλ2

2h
≈ 123µs



Bragg revivals and 3D Talbot effect

Periodic matter waves lead to 3D atomic Talbot effect

SF to MI transition leads to reduced revivals for higher Er

Decoherence mechanisms?

H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Bragg superfluid to Mott insulator transition

SF → MI ≈ 13.5Er

Finite temperature

Interaction effects

Bragg scattering can probe
quantum phase transitions



Spin-dependent lattices

Concept: Control U↑↓ by splitting σ+ and σ− by ∆x = θλx/(2π).

V+(x , θ) = V+
0 cos2(kxx + θ/2) and

V−(x , θ) = V−0 cos2(kxx − θ/2)

O. Mandel et al., Phys. Rev. Lett., 91, 010407 (2003)



Lifetime in spin-dependent lattices

Atom lifetimes in the order of hundreds of ms

Evidence that light scattering is responsible

Adiabatic demagnetization cooling in SD lattices?
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