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Motivation
Spin-gradient thermometry in optical lattices
Adiabatic demagnetization cooling

Bragg scattering from ultracold atoms in optical lattices



Condensed matter and dilute ultracold gases

Normal matter (electrons in ” Artificial” matter (atoms in
ionic lattice) optical lattices)
m Tightly packed atoms m 108 times lower density
m Complicated interactions m Tunable interactions
m Fixed parameters m Controllable parameters
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M. Lewenstein et al., Adv. Phys. 56, 243 (2007)



Condensed matter and dilute ultracold gases

Relative Scales
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B. Capogrosso-Sansone, S. Soyler, N. Prokofev, and B. Svistunov, Phys. Rev. A 81, 053622 (2010)



Paths towards quantum magnetism

Anisotropic-XXZ Heisenberg Hamiltonian:

H=Y [Auzs,.zsjz + M\ (SESF+ 5{5})} -B.Y s
(i) j

m Fermions in harmonic traps

m Ultracold polar molecules in optical lattices

m Trapped ions

m Bosons in optical lattices (number or spin sector)

G. Jo et al., Science, 325, 1521 (2009)

A. V. Gorshkov et al., Phys. Rev. Lett., 107, 115301 (2011)

K. Kim et al., Nature, 465, 590 (2010)

J. Simon et al., Nature, 472, 307 (2011)

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:
1
H=— Z <JuaaiUTajU + HC>+2 Z Uan,-g(n,g +UT\LZ ,Tﬂ,\l]
(ijyo io
2CMI — anisotropic-XXZ Heisenberg Hamiltonian:
H=Y [Auzs,.zsjz + AL (SFS]+ S!S )]
(i)
Tunable experimental parameters:
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L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism
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L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



The necessary ingredients towards quantum magnetism

m Thermometry for the Mott state
m Reliable cooling
m Diagnostics of ordering

m Spin-interactions between nearest neighbors



Spin-gradient thermometry in optical lattices-Theory

Mean spin (s) as a function of

position Xx;:
AMUB(X,')
= tanh ( = 2L 270
(s) = tan ( T )
Low T
-
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D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)
A. M. Rey, Physics, 2, 103 (2009)




Experimental procedure

m Evaporate to BEC in optical trap

m Prepare 50% — 50% spin mixture with nonadiabatic sweep

Spin states for & Rb

We use 8 Rb in a quasi two-level scheme with v = 6.834GHz.
|F=1me=-1)=|1)
and |F =2, mg = -2) = | ]).

m Apply gradient and evaporate further

m Load atoms in a 3D lattice

m Image spin distribution in 2 shots



Spin-gradient thermometry in optical lattices-Experiment

Colder Hotter

Mean spin
i=]
Mean spin

X position (pixels) x position (pixels)
52 nK 296 nK

m Large dynamic range from 500nK to 200pK

m Works deep in the Mott insulator regime

D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)



Spin-gradient thermometry in optical lattices-Experiment
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m Higher V|B| leads to narrower mixed region

m The spin-mixed region shrinks for colder samples



Adiabatic demagnetization cooling-Theory

One each lattice site / -assuming that J << U -the energy of the
spin configuration will be:

E; (nT, ni,Vlé\) ZPV‘é’X,' (HT - ni) +
1
+ 2; Usony (g — 1) +

+ Upynmyn +
+ Vi(ny +ny) +
+ [=ppny — pyny]

For zero magnetization

ZnT;:Znuzg
i i

D. M. Weld et al., Phys. Rev. A, 82, 051603(R) (2010)



Adiabatic demagnetization cooling-Theory
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m Isentropic/adiabatic demagnetization leads to cooling.
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m Extremely low temperatures can be achieved



Experimental " phase space”
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P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Spin temperatures
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Magnetic field gradient

m For slow spin-relaxation times the spin profile is " frozen”

m The lowest/highest spin temperatures have been reached

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Adiabatic demagnetization cooling-Experiment
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Magnetic field gradient

m Adiabatically " demagnetize” our sample by lowering V\§|
m Load the atoms in the lattice
m Cooling?



Adiabatic demagnetization cooling-Experiment
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The width of (s) is always below the isotherm T; = 6.3nk



Adiabatic demagnetization cooling-Experiment
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m Record low temperatures for an equilibrated gas

m Entropy redistribution between spin and kinetic degrees of
freedom leads to cooling

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Cooling from the point of view of entropy redistribution

Site Entropy (kg)

m Mixed-occupation numbers between Mott shells carry high
entropy

m Adiabatic reversible " demagnetization” redistributes entropy
to the spin-mixed region

D. M. Weld et al., Phys. Rev. A, 82, 051603(R) (2010)



Bragg scattering from a crystal of ultracold atoms

Antiferromagnet

T. A. Corcovilos et al., Phys. Rev. A, 81, 013415 (2010)



Bragg scattering from a crystal of ultracold atoms
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The atoms are in the lowest vibrational state

H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Bragg as a probe of position spread

Bragg intensity /gragq:
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Bragg as a probe of momentum spread

For the ground state of a Bragg intensity /pagg:
harmonic oscillator:

(Ap)2K2 t2)

Ap)2 2 /Bragg (&8 exp(— 2m2
)

(Ax(0)? = (Ax)? +

m?2

Earlier experiments:

2
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m

But here:

(Dx)(Dp)? = 12 /4
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Heisenberg uncertainty limited wave functions

M. Weidemller et al., Phys. Rev. Lett., 75, 4583 (1995)
G. Birkl et al.,, Phys. Rev. Lett., 75, 2823 (1995)
H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)




Atomic Talbot effect

Bragg reflection: coherent light incident on periodically modulated
atom density distribution. No need for atomic phase coherence.

What happens in the case of an evolving coherent matter wave?

n=+00 2,2
2 2 h A
V(x,t) = E Chexp {i < T\nx - 7;7/,\72 t)] N\ = ?L

n=—0o0

For n = 1 the Talbot revivals
OCcCur:

m\?
trevivals = W ~ 123M5

Expansion Time [u 8]

Position [um]



Bragg revivals and 3D Talbot effect

m Periodic matter waves lead to 3D atomic Talbot effect
m SF to MI transition leads to reduced revivals for higher E,

m Decoherence mechanisms?

Bragg Intensity (arb.)
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H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Bragg superfluid to Mott insulator transition

m SF — M| =~ 13.5E,
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Spin-dependent lattices

Concept: Control Uy by splitting o4 and o_ by Ax = 0\ /(27).

Vi(x,0) = Vj cos?(kex + 60/2) and
V_(x,0) = Vj cos®(kex — 0/2)
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O. Mandel et al., Phys. Rev. Lett., 91, 010407 (2003)



Lifetime in spin-dependent lattices
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m Atom lifetimes in the order of hundreds of ms
m Evidence that light scattering is responsible

m Adiabatic demagnetization cooling in SD lattices?
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