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Goal

Bose-Hubbard Hamiltonian for a two-component system:

H = −
∑
〈ij〉σ

(
Jµσaiσ

†ajσ + H.c.
)

+
1

2

∑
i ,σ

Uσniσ(niσ−1)+U↑↓
∑

i

ni↑ni↓

2CMI −→ anisotropic-XXZ Heisenberg Hamiltonian:

H =
∑
〈i ,j〉

[
λµz Sz

i Sz
j ± λµ⊥(Sx

i Sx
j + Sy

i Sy
j )
]

Tunable experimental parameters:

λµz =
J2
µ↑ + J2

µ↓
2U↑↓

−
J2
µ↑

U↑
−

J2
µ↓

U↓

λµ⊥ =
Jµ↑Jµ↓

U↑↓

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)
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Why Quantum Magnetism?

Simulation of spin Hamiltonians

Ferromagnetic phases

Spin dynamics

Proof-of-principle

Antiferromagnetic phases

Frustration

Spin liquids

RVB states

High-Tc superconductivity ↔ frustrated AF

Can these be modeled with atoms in optical lattices?



Condensed matter and dilute ultracold gases

Normal matter (electrons in
ionic lattice)

Tightly packed atoms

Complicated interactions

Fixed parameters

”Artificial” matter (atoms in
optical lattices)

108 times lower density

Tunable interactions

Controllable parameters



Condensed matter and dilute ultracold gases



Paths towards quantum magnetism

Anisotropic-XXZ Heisenberg Hamiltonian:

H =
∑
〈i ,j〉

[
λµz Sz

i Sz
j ± λµ⊥(Sx

i Sx
j + Sy

i Sy
j )
]
− Bz

∑
i

Sz
i

Fermions in harmonic traps

Ultracold polar molecules in optical lattices

Trapped ions

Bosons in optical lattices (number or spin sector)

G. Jo et al., Science, 325, 1521 (2009)
A. V. Gorshkov et al., Phys. Rev. Lett., 107, 115301 (2011)
K. Kim et al., Nature, 465, 590 (2010)
J. Simon et al., Nature, 472, 307 (2011)
L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Quantum emulation of classical magnetism

Classical vector spin:

Si = [cos(θi ), sin(θi )]

E ({θi}) = −
∑
〈i ,j〉

Jij cos(θi − θj ) = −
∑
〈i ,j〉

Jij Si · Sj

Matrix elements Jij assume the role of the spin-spin coupling

Jij > 0: ferromagnetic, Jij < 0: antiferromagnetic

No need for superexchange interaction permits higher
temperatures

J. Struck et al., Science, 333, 996 (2011)



Gross-Pitaevskii equation

Time-dependent

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + V (r) + g |Ψ (r, t) |2

)
Ψ (r, t)

Time-independent

µΨ(r) =

(
− ~2

2m
∇2 + V (r) + g |Ψ (r) |2

)
Ψ (r)

Chemical potential can be determined when we now the number of
atoms N =

∫
|Ψ(r)|2d3r

g =
4π~2αs

m

αRb = +5.2nm(repulsive) and αLi = −1.45nm(attractive)∗.

∗Dalfovo et al.. Rev. Mod. Phys. 71, 463 (1999)



Dipole traps for optical lattices

V (x , y , z) =
∑

i={x ,y ,z}

[
Vi cos2

(
π

Li
i

)
+

m

2
ω2

i i2
]

For a far detuned optical lattice potential:

Vlat

Er
=

2m

~2k2

3πc2

2ω3
0

Γ

∆

2P

πw2
0

1-D 2-D 3-D



The Bose-Hubbard Hamiltonian

H =

∫
ψ†(r)

(
− ~2

2m
∇2 + Vlatt(r) + Vtrap(r)

)
ψ(x)d3r+

+
2παs~2

m

∫
ψ†(r)ψ†(r)ψ(r)ψ(r)d3r

The Bose-Hubbard Hamiltonian:

H = −J
∑
〈i ,j〉

a†i aj +
∑

i

εi n̂i +
U

2

∑
i

n̂i (n̂i − 1)

âj and â†j :annihilation and creation operators.

n̂j = â†j âj is the number operator
J is the tunneling energy
U is the interaction energy due to s−wave scattering

M. P. A. Fisher et al., Phys. Rev. B, 40, 546 (1989)
D. Jaksch et al., Phys. Rev. Lett., 81, 3108 (1998)



The tunneling energy J

Hopping term:

H = −J

2

∑
〈i ,j〉

(
a†i aj + ai a

†
j

)
Tunneling matrix element

J =

∫
w∗(x − xi )

[
− ~2

2m
∇2 + Vlatt

]
w(x − xj )d3x



The interaction energy U

Self-interaction term:

H =
U

2

∑
i

n̂i (n̂i − 1)

This term deviates from G-P treatment for low 〈n〉
On-site interaction:

U =
4παs~2

m

∫
|w(x)|4d3x

For 87Rb in a 1064nm lattice:
U↑↑ ≈ U↓↓ ≈ U↑↓

and
Λ = λlatt

2 >> αs



Superfluid to Mott insulator transition

Pure condensate for 0Er

For low lattice energies a coherent periodic wavefunction

For higher energies discrete isolated atoms

M. Greiner et al., Nature, 415, 39 (2002)



SF to MI in a double well

The symmetric: |φS〉 = 1√
2

(|φL〉+ |φR〉)
The anti-symmetric: |φA〉 = 1√

2
(|φL〉 − |φR〉)

Superfluid state:

1√
2

(|φL〉+ |φR〉)⊗
1√
2

(|φL〉+ |φR〉)



SF to MI in a double well

The symmetric: |φS〉 = 1√
2

(|φL〉+ |φR〉)
The anti-symmetric: |φA〉 = 1√

2
(|φL〉 − |φR〉)

Mott insulator state:

1√
2

(|φL〉 ⊗ |φR〉) +
1√
2

(|φR〉 ⊗ |φL〉)



Superfluid and phase coherence

For J >> U the many-body ground state for a homogeneous
system is then given by:

|ΨSF 〉U=0 ∝

(
M∑

i=1

â†i

)N

|0〉

All atoms occupy the identical extended Bloch state.

A macroscopic wavefunction with long-range phase coherence
throughout the lattice.

Poissonian density fluctuations: Var (ni ) = 〈n̂i 〉
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Superfluid and phase coherence

For J >> U the many-body ground state for a homogeneous
system is then given by:

All atoms occupy the identical extended Bloch state.

A macroscopic wavefunction with long-range phase coherence
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Density fluctuations and Poissonian statistics

|Φi 〉 =
∑∞

n=0 f
(i)

n |n〉 and 〈n〉 =
∑

n n|fn|2

fn = g
n(n−1)

2
n̄n/2

√
n!

Where g is a squeezing parameter depending on U/J.



Mott-insulator and number states

For U >> J localized atomic wavefunctions with a fixed number of
atoms per site. The ground state of the many-body system is
given by:

|ΨMI 〉J=0 ∝
M∏

i=1

(
â†i

)n
|0〉

Gross-Pitaevskii equation or Bogoliubov’s theory do not apply

Perfect correlations in the atom number exist between sites

Phase coherence is lost (Coherent =⇒ Fock states)
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Phase diagram and the wedding cake

Phase diagram Mott shells

G. K. Campbell et al., Science, 313, 649 (2006)
W . S. Bakr et al., Science, 329, 547 (2010)



The effect of temperature on the Mott insulator

On-site interaction energy: E (n) = Un(n − 1)/2
Creating a particle costs energy: Eparticle = Un0

Creating a hole gives energy: Ehole = −U(n0 − 1)
Partition function:

Z0 =
∑

n

exp(−E (n)− µn

kBT
)

Local chemical potential µ:

µ(r) = µ0 −
m

2
(ω2

x x2 + ω2
y y2 + ω2

z z2)

Gerbier, F. ,Phys. Rev. Lett. 99, 120405 (2007)
T.-L. Ho, & Q. Zhou, Phys. Rev. Lett., 99, 120404 (2007)



The effect of temperature on the Mott insulator

Particle-hole approximation:

n̄ ≈ n0 + (e
−

Eparticle−µ
kB T − e

−
Ehole+µ

kB T )/Z0

For T = 0: n0 = floor(µ/U) + 1

Melting temperature Tm ≈ 0.2U/kB

Similar with binary system of spin-gradient thermometry



Two component Mott insulator

Bose-Hubbard Hamiltonian for a two-component system:

H = −
∑
〈ij〉σ

(
Jµσaiσ

†ajσ + H.c.
)

+
1

2

∑
i ,σ

Uσniσ(niσ−1)+U↑↓
∑

i

ni↑ni↓

Tunneling energy:

Jµσ ≈ (
4√
π

)E
1/4
R V 3/4

µσ exp

[
−2

√
Vµσ
ER

]

Strong dependence on lattice depth

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator

Bose-Hubbard Hamiltonian for a two-component system:

H = −
∑
〈ij〉σ

(
Jµσaiσ

†ajσ + H.c.
)

+
1

2

∑
i ,σ

Uσniσ(niσ−1)+U↑↓
∑

i

ni↑ni↓

Intraspecies interaction energies:

Uσ ≈
√

8πkαsσ(ER V̄xσV̄yσV̄zσ)1/4

Interspecies interaction energy:

U↑↓ ≈
√

8πkαs↑↓(ER V̄x↑↓V̄y↑↓V̄z↑↓)
1/4

Spin average potential along each direction µ = x , y , z :

V̄µ↑↓ =
4Vµ↑Vµ↓

(V
1/2
µ↑ + V

1/2
µ↓ )2

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:

H = −
∑
〈ij〉σ

(
Jµσaiσ

†ajσ + H.c.
)

+
1

2

∑
i ,σ

Uσniσ(niσ−1)+U↑↓
∑

i

ni↑ni↓

2CMI −→ anisotropic-XXZ Heisenberg Hamiltonian:

H =
∑
〈i ,j〉

[
λµz Sz

i Sz
j ± λµ⊥(Sx

i Sx
j + Sy

i Sy
j )
]

Tunable experimental parameters:

λµz =
J2
µ↑ + J2

µ↓
2U↑↓

−
J2
µ↑

U↑
−

J2
µ↓

U↓

λµ⊥ =
Jµ↑Jµ↓

U↑↓

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Derivation of the Heisenberg Hamiltonian

Basic assumptions:

Second order perturbation theory in the parameter t/U � 1

Half-filling

Our lowest-order effective Hamiltonians will involve only
on-site and nearest-neighbor interactions

Only the lowest one-particle state

H12 = Hinteraction + Htunneling = H
(0)
12 + V12 =

=
1

2

∑
i ,σ,σ′

Uσσ′niσniσ′ −
∑
σ

(
tσa†1σa2σ+H.c

)

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(
V ′12
)
αβ

= −
∑
γ

VαγVγβ
Eγ − (Eα + Eβ)/2

First order correction vanishes because we prohibit number
changing tunneling:

〈g |V |g〉 = 0

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(
V ′12
)
αβ

= −
∑
γ

VαγVγβ
Eγ − (Eα + Eβ)/2

Matrix elements in terms of creation and annihilation operators:

〈↑↓ |V ′| ↑↓〉 = −
t2↑

U↑↓
a†1↑a2↑a

†
2↑a
†
1↑ −

t2↓
U↑↓

a†2↓a1↓a
†
1↓a2↓

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(
V ′12
)
αβ

= −
∑
γ

VαγVγβ
Eγ − (Eα + Eβ)/2

Matrix elements in terms of creation and annihilation operators:

〈↑↑ |V ′| ↑↑〉 = −
t2↑

U↑↑
(a†1↑a2↑a

†
2↑a
†
1↑ + a†2↓a1↓a

†
1↓a2↓)

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(
V ′12
)
αβ

= −
∑
γ

VαγVγβ
Eγ − (Eα + Eβ)/2

Matrix elements in terms of creation and annihilation operators:

〈↓↑ |V ′| ↑↓〉 = −
t↑t↓
U↑↓

(a†1↓a2↓a
†
2↑a1↑ + a†2↑a1↑a

†
1↑a2↑)

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(
V ′12
)
αβ

= −
∑
γ

VαγVγβ
Eγ − (Eα + Eβ)/2

Matrix elements in terms of creation and annihilation operators:

〈↓↓ |V ′| ↓↓〉 = −
t2↓

U↓↓
(a†1↓a2↓a

†
2↓a1↓ + a†2↓a1↓a

†
1↓a2↓)

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Isospin operators

If we now express the previous relationships with the use of the
isospin operators:

Sx = a†↑a↓ + a†↓a↑

Sy = −i(a†↑a↓ − a†↓a↑)

Sz = n↑ − n↓

And on each site:

S+ = (Sx + iSy )/2

S− = (Sx − iSy )/2

B = µ↑ − µ↓

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:

H = −
∑
〈ij〉σ

(
Jµσaiσ

†ajσ + H.c.
)

+
1

2

∑
i ,σ

Uσniσ(niσ−1)+U↑↓
∑

i

ni↑ni↓

2CMI −→ anisotropic-XXZ Heisenberg Hamiltonian:

H =
∑
〈i ,j〉

[
λµz Sz

i Sz
j − λµ⊥(Sx

i Sx
j + Sy

i Sy
j )
]
− Bz

∑
i

Sz
i

Tunable experimental parameters:

λµz =
J2
µ↑ + J2

µ↓
2U↑↓

−
J2
µ↑

U↑
−

J2
µ↓

U↓

λµ⊥ =
Jµ↑Jµ↓

U↑↓

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Phase transitions in the XXZ model

H =
∑
〈i ,j〉

[
λµz Sz

i Sz
j − λµ⊥(Sx

i Sx
j + Sy

i Sy
j )
]
− Bz

∑
i

Sz
i

Trial wavefunctions:

Antiferromagnetic Néel phase: 〈Si 〉AF = (−1)i êz

Ferromagnetic phase: 〈Si 〉F = cosθêx + sinθêz

The energy of each trial state will be:

EAF = −Nλz

2

EF =
Nλz sin2θ

2
− Nλ⊥cos2θ

2
− Bz sinθ



Phase transitions in the XXZ model

Energy for the ferromagnetic state is minimized when:

dEF

dθ
= 0 = cosθ [N(λz + λ⊥)sinθ − Bz ]

Z-ferromagnet for θ = π/2

Canted XY-ferromagnet for θ = arcsin
[

Bz
N(λz+λ⊥)

]



z-ferromagntet to xy-ferromagnet

We can calculate the phase diagram by equating the relevant
energies:
For the z- to xy-ferromagnet transition:

EZF = EXYF ⇒
Nλz

2
− Bz =

Nλz

2

(
B2

z

N2(λz + λ⊥)2

)
− Nλ⊥

2

(
1− B2

z

N2(λz + λ⊥)2

)
−

− B2
z

N(λz + λ⊥)2

Bz = N(λz + λ⊥)



Phase diagram for the XXZ model

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



xy-ferromagntet to the antiferromagnet

Similarly for the boundary between the antiferromagnetic and
xy-ferromagnetic phases:

EAF = EXYF ⇒

−Nλz

2
=

Nλz

2

(
B2

z

N2(λz + λ⊥)2

)
− Nλ⊥

2

(
1− B2

z

N2(λz + λ⊥)2

)
−

− B2
z

N(λz + λ⊥)

B2
z = N2(λ⊥ − λz)2



Phase diagram for the XXZ model

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Phase diagram for the XXZ model

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Antiferromagnetic spin chains in a tilted optical lattice

Single-component MI combined with a magnetic field gradient to
achieve resonant tunneling.

S. Sachdev, K. Sengupta, & S. M. Girvin, Phys. Rev. B 66, 075128 (2002)
J. Simon et al., Nature, 472, 307 (2011)



Antiferromagnetic spin chains in a tilted optical lattice

J. Simon et al., Nature, 472, 307 (2011)



Antiferromagnetic spin chains in a tilted optical lattice

AFM ordering in the number sector for a single-component MI:

J. Simon et al., Nature, 472, 307 (2011)



Superexchange interactions in an array of double wells

H =
∑
σ=↑,↓

[−J(a†σLaσR+a†σRaσL)]−1

2
∆(nσL−nσR)+U(n↑Ln↓L+n↑Rn↓R)

Heff = −Jex (S+
L S−R + S−L S+

R )− 2Jex Sz
L Sz

R with Jeff =
2J2U

U2 −∆2

For the spin operators:

S+
L,R = | ↑〉〈↓ |L,R

S−L,R = | ↓〉〈↑ |L,R
Sz

L,R = (n↑L,R − n↓L,R)/2

S. Fölling et al., Nature, 448, 1029 (2007)
S. Trotzky et al., Science, 319, 295 (2008)



Superexchange interactions in an array of double wells

S. Fölling et al., Nature, 448, 1029 (2007)
S. Trotzky et al., Science, 319, 295 (2008)



The necessary ingredients towards quantum magnetism

Thermometry for the Mott state

Reliable cooling

Diagnostics of ordering

Spin-interactions between nearest neighbors



Spin-gradient thermometry in optical lattices

Mean spin 〈s〉 as a function of
position xi :

〈s〉 = tanh

(
−∆µσB (xi )

2kBT

)
Low T High T

D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)
A. M. Rey, Physics, 2, 103 (2009)



| ↑〉| ↓〉 at the Newspin2



Adiabatic demagnetization cooling

Record low temperatures for an equilibrated gas

Entropy redistribution between spin and kinetic degrees of
freedom leads to cooling

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Bragg scattering from a crystal of ultracold atoms

Antiferromagnet

T. A. Corcovilos et al., Phys. Rev. A, 81, 013415 (2010)



Bragg scattering from a crystal of ultracold atoms

nλ = 2dsinθ

d = 532nm, λ = 780nm, θ = 47◦

Bragg for |F = 2,mF = −2〉

The atoms are in the lowest vibrational state

H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Spin-dependent lattices

Concept: Control U↑↓ by splitting σ+ and σ− by ∆x = θλx/(2π).

V+(x , θ) = V +
0 cos2(kx x + θ/2) and

V−(x , θ) = V−0 cos2(kx x − θ/2)

O. Mandel et al., Phys. Rev. Lett., 91, 010407 (2003)
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