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Bose-Hubbard Hamiltonian for a two-component system:
1
H=- Z <J.U«aaiUTajU + H-C->+§ Z Uania(nia_l)"i_U'N Z nip Ny,
(ijyo io i
2CMI — anisotropic-XXZ Heisenberg Hamiltonian:
H=Y [Auzs,.zsjz + AL (SFS]+ S!S )]
(i)
Tunable experimental parameters:
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L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Motivation
Ultracold atoms in optical lattices and the Bose-Hubbard model

Two-component Mott insulator and quantum magnetism
m The XXZ- Heisenberg Hamiltonian
m Emulating magnetic phase transitions

Early experiments

Our approach



Why Quantum Magnetism?

Simulation of spin Hamiltonians

Ferromagnetic phases

m Spin dynamics

m Proof-of-principle

Antiferromagnetic phases

Frustration

|
m Spin liquids
m RVB states
m High- T, superconductivity <> frustrated AF

Can these be modeled with atoms in optical lattices?



Condensed matter and dilute ultracold gases

Normal matter (electrons in ” Artificial” matter (atoms in
ionic lattice) optical lattices)

m Tightly packed atoms m 108 times lower density

m Complicated interactions m Tunable interactions

m Fixed parameters m Controllable parameters




Condensed matter and dilute ultracold gases

Relative Scales

Rb in YAG lattice
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B. Capogrosso-Sansone, S. Soyler, N. Prokofev, and B. Svistunov, Phys. Rev. A 81, 053622 (2010)



Paths towards quantum magnetism

Anisotropic-XXZ Heisenberg Hamiltonian:

H=Y [Auzs,.zsjz + M\ (SESF+ 5{5})} -B.Y s
(i) j

m Fermions in harmonic traps

m Ultracold polar molecules in optical lattices

m Trapped ions

m Bosons in optical lattices (number or spin sector)

G. Jo et al., Science, 325, 1521 (2009)

A. V. Gorshkov et al., Phys. Rev. Lett., 107, 115301 (2011)

K. Kim et al., Nature, 465, 590 (2010)

J. Simon et al., Nature, 472, 307 (2011)

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Quantum emulation of classical magnetism

Classical vector spin:

S; = [cos(0;),sin(6))]
E({0i}) = ZJ,Jcos ; :_ZJUSI"SJ

/_\A

m Matrix elements J;; assume the role of the spin-spin coupling

m Jj > 0: ferromagnetic, J; < 0: antiferromagnetic

m No need for superexchange interaction permits higher
temperatures

J. Struck et al., Science, 333, 996 (2011)



Gross-Pitaevskii equation

Time-dependent

r 2
m“ﬁ;”::(7iv2+v<)+mw0xnﬁuwnﬂ

Time-independent

() = (5 VPV eV () V()

Chemical potential can be determined when we now the number of
atoms N = [ |W(r)2d%r

Arh2a,
m

g:

arp = +5.2nm(repulsive) and «a; = —1.45nm(attractive)*.

*Dalfovo et al.. Rev. Mod. Phys. 71, 463 (1999)



Dipole traps for optical lattices

V(x,y,z) = Z [\/,-cos2 <ZT/) + ,;qw,-ziz]

. 1
i={x.y,z}

For a far detuned optical lattice potential:

Viee  2m 3nc® T 2P

E,  h2k2 2w3 Zﬂ'wg




The Bose-Hubbard Hamiltonian

H= [ 010) (<9 4 Vi) Vi) ) )P

«a 2
+ 20 [yl (e ()t

The Bose-Hubbard Hamiltonian:
_ to s U
H= —J(Z;a,-aj—i-z:e,n,—k az:n,(n, 1)
iJ i i

a; and éJT.:annihiIation and creation operators.

hj = é}éj is the number operator

J is the tunneling energy

U is the interaction energy due to s—wave scattering

M. P. A. Fisher et al., Phys. Rev. B, 40, 546 (1989)
D. Jaksch et al., Phys. Rev. Lett., 81, 3108 (1998)




The tunneling energy J

Hopping term:

Tunneling matrix element

h2
J= / w*(x — x;) [—2mV2 + V/att] w(x — xj)d3x

5 —J, 7Li 532 nm
10 o
. —J, ~"Rb 1064 nm
10
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The interaction energy U

Self-interaction term:
Uy s
= E Z n; (n,- — 1)
i
This term deviates from G-P treatment for low (n)

On-site interaction:
47Ta
I [ wioltes

For 8" Rb in a 1064nm lattice: 1 //
Upp = Uy = Uy 1
and <

by 10
/\ — Istt > > as /”/
107 —U, 7Li 532 nm

—U, ®Rb 1064 nm
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Superfluid to Mott insulator transition

m Pure condensate for OE,
m For low lattice energies a coherent periodic wavefunction

m For higher energies discrete isolated atoms

M. Greiner et al., Nature, 415, 39 (2002)



SF to Ml in a double well

The symmetric: |¢s) = 7(| é1) + |Pr))
I5(lo1) —16r))

The anti-symmetric: |pa)

Superfluid state:

7 (loL) + |#r)) |¢L + |9r))

WWW



SF to Ml in a double well

The symmetric: |¢s) =

5 (lo0) +19r))

7(|¢L> |PR))

V%

The anti-symmetric: |¢pa) =

Mott insulator state:

\2(|¢>R> ® |61))

vV

zu«m ® 6r)) +



Superfluid and phase coherence

For J >> U the many-body ground state for a homogeneous
system is then given by:

M N
WsF)y—o <Z 9f> 0)
i=1

m All atoms occupy the identical extended Bloch state.

m A macroscopic wavefunction with long-range phase coherence
throughout the lattice.

m Poissonian density fluctuations: Var (n;) = (f;)
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Superfluid and phase coherence
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Density fluctuations and Poissonian statistics

19;) = 32 £\7]n) and (n) = 3, n|fu]?
n(n—1) [_']’7/2

2
g NG

Where g is a squeezing parameter depending on U/J.

fn=
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Mott-insulator and number states

For U >> J localized atomic wavefunctions with a fixed number of
atoms per site. The ground state of the many-body system is

given by:
M

W) —o < [ | (5?),7 0)

i=1

m Gross-Pitaevskii equation or Bogoliubov's theory do not apply
m Perfect correlations in the atom number exist between sites

m Phase coherence is lost (Coherent = Fock states)
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Phase diagram and the wedding cake

Phase diagram Mott shells
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G. K. Campbell et al., Science, 313, 649 (2006)
W . S. Bakr et al., Science, 329, 547 (2010)



The effect of temperature on the Mott insulator

On-site interaction energy: E(n) = Un(n—1)/2
Creating a particle costs energy: Eparticle = Ung
Creating a hole gives energy: Epoe = —U(ng — 1)
Partition function:

n

Local chemical potential p:

m
u(r) = po = — (wex® +wyy® + wiz®)

Gerbier, F. ,Phys. Rev. Lett. 99, 120405 (2007)
T.-L. Ho, & Q. Zhou, Phys. Rev. Lett., 99, 120404 (2007)



The effect of temperature on the Mott insulator

Particle-hole approximation:

_ Eparticle— ©w

Arng+ (e T —e kT )/Z

—T=0
=+ TIU = 0.01

Y o 05 1 15 2
ity

m For T =0: ng = floor(pu/U) + 1

m Melting temperature T, ~ 0.2U/kg

m Similar with binary system of spin-gradient thermometry



Two component Mott insulator

Bose-Hubbard Hamiltonian for a two-component system:
1
H=-— <Z>: <lea,'aTajg + H.C.)—i—i Z Ugn,'a(n,'g—l)-i-UN Z nis Ny
ij)o 1,0 i

Tunneling energy:

4 Vi
Juo = (—W)E;/“ V34 exp [—2 —ke

Strong dependence on lattice depth

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator

Bose-Hubbard Hamiltonian for a two-component system:
1
H=-— <z>: (Juga,'aTajg + H.C.)—I-E Z Ugnia(nig—1)+UT¢ Z nitnjy
ij)o I, i

Intraspecies interaction energies:

o~ VBTkasy (Er Vo Vyo Voo )/
Interspecies interaction energy:
Upy = VBrkasyy (Er Vg Vi Vi )1/
Spin average potential along each direction p = x, y, z:

4 VHT Vui

VMN = A2 1/2
(Vut? + Va2

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:
1
H=— Z <JuaaiUTajU + HC>+2 Z Uan,-g(n,g +UT\LZ ,Tﬂ,\l]
(ijyo io
2CMI — anisotropic-XXZ Heisenberg Hamiltonian:
H=Y [Auzs,.zsjz + AL (SFS]+ S!S )]
(i)
Tunable experimental parameters:

2 2 2 2
N 7 T 7
Uy U U

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Derivation of the Heisenberg Hamiltonian

Basic assumptions:
m Second order perturbation theory in the parameter t/U < 1
m Half-filling

m Our lowest-order effective Hamiltonians will involve only
on-site and nearest-neighbor interactions

m Only the lowest one-particle state

(0)
H12 = Hinteraction + Htunneling = H12 + V12 -

1
= 5 Z Uaa’niania’ - Z <taaiga2a+H.c>

i,oo! o

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

First order correction vanishes because we prohibit number
changing tunneling:
(glV]g) =0

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)




Derivation of the Heisenberg Hamiltonian

(Via), ZE — E +Eﬁ)/2
Matrix elements in terms of creation and annihilation operators:
/ I TP L A
(VI = Uy, 1L G1rd2rdxdy — Uy, 1 92091191 92)

VAR RVENRY

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(Via), ZE — E +Eﬁ)/2

Matrix elements in terms of creation and annihilation operators:

2
(M VI 1) = ——1(a} anyabyal, + abar 2l 201)
U 1492792911 2919y 92]

moIm RVERNY

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(v
12) ZE — E +E5)/2

Matrix elements in terms of creation and annihilation operators:

trt
VIt = —Jjj(aﬁaua%an + aj,arra);a21)

RNy RVENRY

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Derivation of the Heisenberg Hamiltonian

(Vi2), ZE — E +Eﬁ)/

Matrix elements in terms of creation and annihilation operators:

t2
W IVIH) = —Ufl(ahaaf%ﬁu +ab aa] 2))

ORRRY R

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Isospin operators

If we now express the previous relationships with the use of the
isospin operators:

5% = aLai + aIaT

S = —i(a$a¢ — aIaT)
SZ = nT — ni
And on each site:
St = (8 +i58Y)/2
ST =(5-i5")/2

B=pr—pn

A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett., 90, 100401 (2003)



Two component Mott insulator and quantum magnetism

Bose-Hubbard Hamiltonian for a two-component system:

1
H=— Z (J‘UﬂaiaTaja + HC>+§ Z Ugn,'g(n,'g—l)—l-UfN(Z nipn;
(if)o io i
2CMI — anisotropic-XXZ Heisenberg Hamiltonian:

=3 [MeS7SF — M (5157 +575))] - B. 3 57
(i) '

Tunable experimental parameters:

STV U U,

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Phase transitions in the XXZ model

H=Y [Auzs,.zsjz — A\ (SESF + S,YSJ.Y)} -B.Y s
(i) i
Trial wavefunctions:
m Antiferromagnetic Néel phase: (S;)ar = (—1)'8,
m Ferromagnetic phase: (S;)F = cosféx + sinfé,

The energy of each trial state will be:

N,
2
7N)\zsin29 N | cos?0
-2 2

Ear = —

Er — B,sinf




Phase transitions in the XXZ model

Energy for the ferromagnetic state is minimized when:

dE
TQF =0 = cosO [N(\; + \1)sinf — B,]

m Z-ferromagnet for § = /2

m Canted XY-ferromagnet for # = arcsin [ﬁ}



z-ferromagntet to xy-ferromagnet

We can calculate the phase diagram by equating the relevant
energies:
For the z- to xy-ferromagnet transition:

Ezr = Exyr =

NA:  p _ NA B2
2 2 AN+ A)2

SN BE )
2 N2(A; + AL )2

82

z

N+ A1)?

B, =N\, + X))



Phase diagram for the XXZ model

wiy -
iy~
-
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L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



xy-ferromagntet to the antiferromagnet

Similarly for the boundary between the antiferromagnetic and
xy-ferromagnetic phases:

Ear = Exyr =

CNA N, B2
2 2 \N2(\,+)0)2

N B2 -
2 N2\, + A1 )2

B2
TN+ AL)

B? = N>(\, — \,)?



Phase diagram for the XXZ model

wiy -
iy~
-

5
2 I L
0 0.5 1

L. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett., 91, 090402 (2003)



Phase dia
gram for the X
XZ model
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Antiferromagnetic spin chains in a tilted optical lattice

a A<0:paramagnet b 4a=0 € 4> 0: antiferromagnet d Spin mapping

s $EEFFE FeiEl  shuBee

Atom position

in tilted lattice = L2 $ - @
] L.. ‘ - 3
N L ‘)@ - Y é = @
o, IR A
9 '@ > - @

Single site L
readout
(odd/even) © 0 0 0 o 5 8 6 5 @

Single-component MI combined with a magnetic field gradient to
achieve resonant tunneling.

S. Sachdev, K. Sengupta, & S. M. Girvin, Phys. Rev. B 66, 075128 (2002)
J. Simon et al., Nature, 472, 307 (2011)



Antiferromagnetic spin chains in a tilted optical lattice

a T T T T T T
Multicritical point
EEXEKI
Paramagnetic
0.75 -
&

0.50 - $ é $ * $ é z

Antiferromagnetic
0.25- 4

0 L

0 0.25 0.50
hx
b Realizes Drives quantum

constraint phase transition
r e r = d

H :JZ SISt —(1-4)Si-232Fsi
!
hz hx

Magnetic fields: Longitudinal Transverse

J. Simon et al., Nature, 472, 307 (2011)



Antiferromagnetic spin chains in a tilted optical lattice

AFM ordering in the number sector for a single-component MI:

1.0 T T T T T T T

08 Paramagnet \’\

(EEERE; N\ .
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06 %JL \*\ iINfH 7
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J. Simon et al., Nature, 472, 307 (2011)



Superexchange interactions in an array of double wells

1
H= Z[ J(a LaaR+a RaaL)]—* (ner—ner)+U(nyLny +nyrnyR)
o="1,}

2J2U

Herr = —Jex(S Sk + S| Sg) = 2JexS{ Sk With Jerr = 515

For the spin operators:
Sir=1M{ LR

Sir=1HT LR
Str=(mLr—nyR)/2

S. Folling et al., Nature, 448, 1029 (2007)
S. Trotzky et al., Science, 319, 295 (2008)



Superexchange interactions in an array of double wells

A v
RN
!

Population imbalance x(f)
and spin imbalance N,(t)

& Qoo L © Population 4
05 ¢ f \ , o Spin
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S. Folling et al., Nature, 448, 1029 (2007)
S. Trotzky et al., Science, 319, 295 (2008)



The necessary ingredients towards quantum magnetism

m Thermometry for the Mott state
m Reliable cooling
m Diagnostics of ordering

m Spin-interactions between nearest neighbors



Spin-gradient thermometry in optical lattices

Mean spin (s) as a function of

position Xx;:
AMUB(X,')
= tanh ( = 2L 270
(s) = tan ( T )
Low T
-

—

D. M. Weld et al., Phys. Rev. Lett., 103, 245301 (2009)
A. M. Rey, Physics, 2, 103 (2009)
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Adiabatic demagnetization cooling
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Final magnetic field gradient (G/cm)

m Record low temperatures for an equilibrated gas

m Entropy redistribution between spin and kinetic degrees of
freedom leads to cooling

P. Medley et al., Phys. Rev. Lett., 106, 195301 (2011)



Bragg scattering from a crystal of ultracold atoms

Antiferromagnet

T. A. Corcovilos et al., Phys. Rev. A, 81, 013415 (2010)



Bragg scattering from a crystal of ultracold atoms

R N N
NI 3K B ) Bragg for |F = 2, mp = —2)
- N
—> e o o,
ragg in ’ ‘ o/
ee e
lBraggdut
n\ = 2dsinf

d =532nm, A = 780nm, 0 = 47°

The atoms are in the lowest vibrational state

H. Miyake et al., Phys. Rev. Lett., 107, 175302 (2011)



Spin-dependent lattices

Concept: Control Uy by splitting o4 and o_ by Ax = 0\ /(27).

Vi(x,0) = Vj cos?(kex + 60/2) and
V_(x,0) = Vj cos®(kex — 0/2)

~ .08 \w/
0045 o 50 100 150

0 (degrees)

O. Mandel et al., Phys. Rev. Lett., 91, 010407 (2003)
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