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Outline of lectures
1. Overview of experimental background and idea of 
“topological order”.  Basic notions of topology relevant
to condensed matter.

2. Integer quantum Hall physics.  Berry phases in metals
and insulators.  Thouless-type order.

3. Fractional quantum Hall physics.  Composite fermions.
Wen-type order.

4. Some current directions:
A. Topological spin liquids.
B. Entanglement entropy and topology.
C. Topological field theories.

Topics chosen partly to reflect
“unity of theoretical physics”



Types of order
Much of condensed matter is about how different kinds of order emerge from 
interactions between many simple constituents.

Until 1980, all ordered phases could be understood as “symmetry breaking”:

an ordered state appears at low temperature when the system spontaneously 
loses one of the symmetries present at high temperature.

Examples:
Crystals break the translational and rotational symmetries of free space.
The “liquid crystal” in an LCD breaks rotational but not translational symmetry.
Magnets break time-reversal symmetry and the rotational symmetry of spin space.
Superfluids break an internal symmetry of quantum mechanics.



Types of order
At high temperature, entropy dominates and leads to a disordered state.
At low temperature, energy dominates and leads to an ordered state.

In case this sounds too philosophical, there are testable results that come out of 
the “Landau theory” of symmetry-breaking:

“Universality” at continuous phase transitions (Wilson, Fisher, Kadanoff, ...)
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Experiment :  β = 0.322 ± 0.005
Theory :         β = 0.325 ± 0.002



Types of order
In 1980, the first ordered phase beyond symmetry breaking was discovered.

Electrons confined to a plane and in a strong magnetic field show, at low enough 
temperature, plateaus in the “Hall conductance”:

force I along x and measure V along y

on a plateau, get

at least within 1 in 109 or so.

What type of order causes
this precise quantization?

Note I: the AC Josephson effect between superconductors similarly allows 
determination of e/h.
Note II: there are also fractional plateaus, about which more later.

σxy = n
e2

h



Topological order

Definition I:

In a topologically ordered phase, some physical response function is given by a 
“topological invariant”.

What is a topological invariant?  How does this explain the observation?

Definition II:

A topological phase is insulating but always has metallic edges/surfaces when put 
next to vacuum or an ordinary phase.

What does this have to do with Definition I?

“Topological invariant” = quantity that does not 
change under continuous deformation

(A third definition: phase is described by a “topological field theory”)

What type of order causes the precise quantization
in the Integer Quantum Hall Effect (IQHE)?



Traditional picture:
Landau levels

Normally the Hall ratio is (here n is a density)

Then the value (now n is an integer)

corresponds to an areal density

This is exactly the density of “Landau levels”, the discrete spectrum of eigenstates 
of a 2D particle in an orbital magnetic field, spaced by the cyclotron energy.  The 
only “surprise” is how precise the quantization is.
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Traditional picture:
Landau levels and edge states

So a large system has massively degenerate Landau levels if there is no applied 
potential.

σxy = n
e2

h

n

2π�2
= neB/hc.

E = (n+ 1/2)�ωc, ωc = cyclotron frequency

In a slowly varying applied potential, the local occupation changes; at some 
points Landau levels are fractionally filled and there are metallic “edge states”. 

Blackboard interlude: What happens with disorder?
Where is the topology? (Laughlin argument and edge vs. bulk transport)

Note: for a relativistic fermion, as in graphene, n goes as sqrt(B).



Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

�

M
κ dA = 2πχ = 2π(2− 2g)



Topological invariants

Bloch’s theorem:
One-electron wavefunctions in a crystal
(i.e., periodic potential) can be written

where k is “crystal momentum” and u is periodic (the same in every unit cell).

Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 
with periodic boundaries.
As k changes, we map out an “energy band”.  Set of all bands = “band structure”.

The Brillouin zone will play the role of the “surface” as in the previous example,

which will give us the “curvature”.

Good news:
for the invariants in the IQHE and topological insulators,

we need one fact about solids

and one property of quantum mechanics, the Berry phase

ψ(r) = eik·ruk(r)



Berry phase
What kind of “curvature” can exist for electrons in a solid?

Consider a quantum-mechanical system in its (nondegenerate)
ground state.

The adiabatic theorem in quantum mechanics implies that,
if the Hamiltonian is now changed slowly, the system remains in 
its time-dependent ground state.

But this is actually very incomplete (Berry).

When the Hamiltonian goes around a closed loop k(t) in 
parameter space, there can be an irreducible phase

relative to the initial state.

Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

Michael Berry
φ =

�
A · dk, A = �ψk|− i∇k|ψk�



Berry phase
Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

Michael Berry

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A



Berry phase in solids
In a solid, the natural parameter space is electron momentum.

The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:

We keep finding more physical properties that are determined 
by these quantum geometric quantities.

The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,
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The importance of the edge
But wait a moment...

This invariant exists if we have energy bands that are
either full or empty, i.e., a “band insulator”.

How does an insulator conduct charge?

Answer: (Laughlin; Halperin)

There are metallic edges at the boundaries of our 2D
electronic system, where the conduction occurs.

These metallic edges are “chiral” quantum wires (one-way 

streets).  Each wire gives one conductance quantum (e2/h).

The topological invariant of the bulk 2D material just tells how 
many wires there have to be at the boundaries of the system.

How does the bulk topological invariant “force” an edge mode?

σxy = n
e2

h
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The importance of the edge
The topological invariant of the bulk 2D material 
just tells how many wires there have to be at the 
boundaries of the system.

How does the bulk topological invariant “force” an 
edge mode?

Answer:

Imagine a “smooth” edge where the system 
gradually evolves from IQHE to ordinary insulator.  
The topological invariant must change.

But the definition of our “topological invariant” 
means that, if the system remains insulating so that 
every band is either full or empty, the invariant 
cannot change.

∴ the system must not remain insulating.

n=1
IQHE

Ordinary insulator

e

(What is “knotted” are the electron wavefunctions)

IQHE Ordinary insulator
(or vacuum)



2005-present and
“topological insulators” 

The same idea will apply in the new topological 
phases discovered recently:

a “topological invariant”, based on the Berry phase, 
leads to a nontrivial edge or surface state at any 
boundary to an ordinary insulator or vacuum.

However, the physical origin, dimensionality, and 
experiments are all different.

n=1
IQHE

Ordinary insulator

e

We discussed the IQHE so far in an unusual way.  The magnetic field entered 
only through its effect on the Bloch wavefunctions (no Landau levels!).

This is not very natural for a magnetic field.
It is ideal for spin-orbit coupling in a crystal.



The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
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Ordinary insulator

e

HSO = λL · S

2D topological
insulator

Ordinary insulator



The “quantum spin Hall effect”
In this type of model, electron spin is conserved, and 
there can be a “spin current”.

An applied electrical field causes oppositely directed 
Hall currents of up and down spins.

The charge current is zero, but the “spin current”
is nonzero, and even quantized!

2D topological
insulator

Ordinary insulator

J i
j = σ

s
HεijkEk

However...
1. In real solids there is no conserved direction of spin.

2. So in real solids, it was expected that “up” and “down” would always 
mix and the edge to disappear.

3. The theory of the above model state is just two copies of the IQHE.



The 2D topological insulator
It was shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin current”, 
something of this physics does survive.

In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.

Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. What is the Berry phase expression of the invariant?
3. How can this edge be seen?



The “Chern insulator” and 
QSHE

Haldane showed that although broken time-reversal is necessary 
for the QHE, it is not necessary to have a net magnetic flux.

Imagine constructing a system (“model graphene”) for which 
spin-up electrons feel a pseudofield along z, and spin-down 
electrons feel a pseudofield along -z.

Then SU(2) (spin rotation symmetry) is broken, but time-
reversal symmetry is not:

an edge will have (in the simplest case)
a clockwise-moving spin-up mode
and a counterclockwise-moving
spin-down mode
(Murakami, Nagaosa, Zhang, ’04)

Topological
insulator

Ordinary insulator

e

e



The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The first term gives a semimetal with Dirac nodes (as in 
graphene).

The second term, which appears if the sublattices are 
inequivalent (e.g., BN), opens up a (spin-independent) gap. 

When the Fermi level is in this gap, we have an ordinary band 
insulator.

Example: Kane-Mele-Haldane model for graphene
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The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The spin-dependent part contains two SO couplings

The first spin-orbit term is the key: it involves second-neighbor hopping (vij is ±1 
depending on the sites) and Sz.  It opens a gap in the bulk and acts as the desired 
“pseudofield” if large enough.

Claim: the system with an SO-induced gap is fundamentally different from
the system with a sublattice gap: it is in a different phase.
It has gapless edge states for any edge (not just zigzag).

Example: Kane-Mele-Haldane model for graphene

H
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Example: Kane-Mele-Haldane model for graphene

Without Rashba term (second SO coupling), have two copies of Haldane’s 
IQHE model.  All physics is the same as IQHE physics.

The Rashba term violates conservation of Sz--how does 
this change the phase?  Why should it be stable once up 
and down spins mix?
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Invariants in T-invariant systems?
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern integer” that counts the 
number of Kramers pairs of edge modes:

n↑ + n↓ = 0, n↑ − n↓ = 2ns



What about T-invariant systems?
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern number” that counts the 
number of Kramers pairs of edge modes:

For general spin-orbit coupling, there is no conserved quantity that can be 
used to classify bands in this way, and no integer topological invariant.

Instead, a fairly technical analysis shows

1. each pair of spin-orbit-coupled bands in 2D has a Z2 invariant (is either 
“even” or “odd”), essentially as an integral over half the Brillouin zone;

2. the state is given by the overall Z2 sum of occupied bands:
if the sum is odd, then the system is in the “topological insulator” phase

n↑ + n↓ = 0, n↑ − n↓ = 2ns



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.



The 2D topological insulator
Another way to understand Z2-ness (Kane and Mele)

1. Imagine a 2D system that has a 1D edge.  Assume 
translation invariance along the edge.

2. There is then a 1D band structure.  The bulk states 
form continua above and below the band gap.

E

k

insulator
vacuum

bulk valence

bulk conduction

gap



The 2D topological insulator
Another way to understand Z2-ness (Kane and Mele)

1. Imagine a 2D system that has a 1D edge.  Assume 
translation invariance along the edge.

2. There is then a 1D band structure.  The bulk states 
form continua above and below the band gap.

3. Time-reversal imposes constraints: ±k have the same 
energies, and there have to be degeneracies at the time-
reversal symmetric points k=0, k=±π/a.

There are two topologically different ways to connect 
up the T-symmetric points.

The two lines out of each Kramers point in the gap 
either connect to the same Kramers point (OI) or 
different Kramers points.

E

k

insulator
vacuum

Ordinary insulator:
some or all Fermi energies

cross no edge states

bulk valence

bulk conduction

gap
EF



The 2D topological insulator
Another way to understand Z2-ness (Kane and Mele)

1. Imagine a 2D system that has a 1D edge.  Assume 
translation invariance along the edge.

2. There is then a 1D band structure.  The bulk states 
form continua above and below the band gap.

3. Time-reversal imposes constraints: ±k have the same 
energies, and there have to be degeneracies at the time-
reversal symmetric points k=0, k=±π/a.

There are two topologically different ways to connect 
up the T-symmetric points.

The two lines out of each Kramers point in the gap 
either connect to the same Kramers point (OI) or 
different Kramers points.

E

k
What about an explicit Hamiltonian?

insulator
vacuum

Topological insulator:
the Fermi energies

must cross an edge state

bulk valence

bulk conduction

EF



The 2D topological insulator

2. What is the Berry phase expression of the invariant?
It is an integral over half the Brillouin zone,

3. How can this edge be seen?
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Experimental signatures
Key physics of the edges: robust to disorder and hence good 
charge conductors .

The topological insulator is therefore detectable by 
measuring the two-terminal conductance of a finite sample: 
should see maximal 1D conductance. 

In other words, spin transport does not have to be measured 
to observe the phase.

Materials recently proposed: Bi, InSb, strained Sn (3d), 
HgTe (2d) (Bernevig, Hughes, and Zhang, Science (2006); experiments 
by Molenkamp et al. (2007) see an edge, but G ~ 0.3 G0)

G =
2e2

h



The 2D topological insulator
Key: the topological invariant predicts the “number of quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =
2e2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp



Review of 3D facts

The 2D conclusion is that band insulators come in two classes:
ordinary insulators (with an even number of edge modes, generally 0)
“topological insulators” (with an odd number of Kramers pairs of edge modes, generally 1).

What about 3D?  The only 3D IQHE states are essentially layered versions of 2D states:
Mathematically, there are three Chern integers:

Cxy (for xy planes in the 3D Brillouin torus), Cyz, Cxz

There are similar layered versions of the topological insulator, but these are not very 
stable; intuitively, adding parities from different layers is not as stable as adding integers.

However, there is an unexpected 3D topological insulator state that does not have any 
simple quantum Hall analogue.  For example, it cannot be realized in any model where up 
and down spins do not mix!

General description of invariant from JEM and L. Balents, PRB RC 2007.
The connection to physical consequences in inversion-symmetric case (proposal of BiSb, 
Dirac surface state):  Fu, Kane, Mele, PRL 2007.  See also R. Roy, arXiv.



Build 3D from 2D
Note that only at special momenta like k=0 is the “Bloch Hamiltonian” time-reversal 
invariant: rather, k and -k have T-conjugate Hamiltonians.  Imagine a square BZ:

CB
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B
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C

(a) (b)

H(−k) = TH(k)T−1

“effective BZ”
In 3D, we can take the BZ to be a cube (with periodic boundary conditions):

think about xy planes

2 inequivalent planes
look like 2D problem

kz = π/a

kz = −π/a

kz = 0

3D “strong topological insulators” go 
from an 2D ordinary insulator to a 2D 
topological insulator (or vice versa) in 
going from kz=0 to kz=±π/a.

This is allowed because intermediate 
planes have no time-reversal constraint.



Topological insulators in 3D
1. This fourth invariant gives a robust 3D “strong topological insulator” whose metallic 
surface state in the simplest case is a single “Dirac fermion” (Fu-Kane-Mele, 2007)

2. Some fairly common 3D materials might be topological insulators! (Fu-Kane, 2007)

Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

How can we look at the metallic surface state of a 3D material to test this prediction?
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ARPES of topological insulators
Imagine carrying out a “photoelectric effect” experiment very carefully.

Measure as many properties as possible of the outgoing electron
to deduce the momentum, energy, and spin it had while still in the solid.

This is “angle-resolved photoemission spectroscopy”, or ARPES.



ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Se3 from the same group in 2009:

The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.



STM of topological insulators
The surface of a simple topological insulator like Bi2Se3 is “1/4 of graphene”:
it has the Dirac cone but no valley or spin degeneracies.

Scanning tunneling microscopy image (Roushan et al., Yazdani group, 2009)

STM can see the absence of scattering within a Kramers pair (cf. analysis of 
superconductors using quasiparticle interference, D.-H. Lee and S. Davis).
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Topological	
  Insulators	
  from	
  Spin-­‐orbit	
  Coupling
Semiclassical	
  picture

1D edge of Quantum Hall Effect

1D edge of “Quantum Spin Hall 
Effect” (Murakami, Nagaosa, Zhang 
’04; Kane and Mele ’05; Bernevig et 
al. ’06)
Experiment: Molenkamp group ‘07

2D surface of 3D Topological 
Insulator (JEM and Balents, Fu-
Kane-Mele, Roy, ’07)
Experiment: Hasan group ’08
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Spintronic applications of 3D TIs
This is a very active area on the archive, but most of what is discussed is very simple:

kx

ky

E

EF

kx

ky

(a) (b)

a charge current at one TI surface has a nonzero average spin.  The same is true for a Rashba 
quantum well, where the two electron sheets almost cancel; in a TI there is only one sheet 
and the effect is much stronger.



Stability, or
Phases versus points

True quantum phases in condensed matter systems should 
be robust to disorder and interactions.

Examples:
The Fermi gas is robust to repulsive interactions in 2D and 3D (the 
“Fermi liquid”) but not in 1D.  In 1D, conventional metallic behavior is 
only seen at one fine-tuned point in the space of interactions.

The Fermi gas is robust to disorder in 3D but not in 1D or 2D 
(Anderson localization): the clean system is only a point in phase space 
in 1D or 2D.

The IQHE is a phase robust to both disorder and interactions.

What about the SQHE?  Is it a new phase of condensed matter?



TKNN, 1982: the Hall conductance is related to an 
integral over the magnetic Brillouin zone:

Niu, Thouless, Wu, 1985: many-body generalization
more generally, introducing “twist angles” around the two circles of a torus and 
considering the (assumed unique) ground state as a function of these angles,

This quantity is an integer.
For T-invariant systems, all ordinary Chern numbers are zero.

Remark on simple
generalization of IQHE topology
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Redefining the Berry phase
with disorder

!
2

!
1

Suppose that the parameters in H do not 
have exact lattice periodicity.

Imagine adding boundary phases to a finite 
system, or alternately considering a 
“supercell”.  Limit of large supercells -> 
disordered system.

Effect of boundary phase is to shift k: 
alternate picture of topological invariant is 
in terms of half the (Φ1,Φ2) torus.

Can define Chern parities by pumping, analogous to Chern 
numbers, and study phase diagram w/disorder



Spin-orbit T=0 phase diagram (fix spin-independent part):
instead of a point transition between ordinary and topological 
insulators, have a symplectic metal in between. 

We compute this numerically using Fukui-Hatsugai algorithm (PRB 2007) to 
compute invariants in terms of boundary phases (A. Essin and JEM, PRB 2007).  
See also Obuse et al., Onoda et al. for other approaches with higher 
accuracy->scaling exponents for transitions; Ryu et al. for theory.

The 2D topological insulator with disorder

!
2

!
1

λr

λs

Topological insulator

Ordinary insulator

IQHE-class

transition

2D spin-orbit (symplectic) metal

Symplectic metal-insulator transitions



Summary of recent experiments

1. There are now at least 3 strong topological insulators that have been seen 
experimentally (BixSb1-x, Bi2Se3, Bi2Te3).

2. Their metallic surfaces exist in zero field and have the predicted form.

3. These are fairly common bulk 3D materials (and also 3He B).

4. The temperature over which topological behavior is observed can extend up 
to room temperature or so.

What is the physical effect or response that defines a topological insulator 
beyond single electrons?

(What are they good for?)

Are there more profound consequences of geometry and topologiy?
Yes!  1. Many basic phenomena in matter
2. New types of particles, with new types of statistics

But first we need a few basic notions from topology.

What’s left



Outline of lecture 2

1. Intuitive picture of the Berry phase.  What does it control in insulators and 
metals?

Insulators: Polarization, IQHE, “topological insulators”, ...

Metals: New semiclassical term for electron motion.  

2. What is the physical effect or response that defines a topological insulator 
beyond single electrons?  Quantized magnetoelectric effect

3. What do we learn about magnetoelectric effects more generally?
(“multiferroic” materials)

4. Topological order and new particles



Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

ψk → eiχ(k)ψk

A→ A+∇kχ

F = ∇×A

Berry phase review



To get a physical interpretation of what A means, note that
if we consider a plane wave exp(i k r), then the vector potential 
just gives the position r.

Now in a periodic crystal, the position can’t be uniquely 
defined, but we nevertheless expect that A might reflect 
something to do with the position of the wavefunction within the 
unit cell.

φ =
�

A · dk, A = �ψk|− i∇k|ψk�

F = ∇×A

How can we picture A?



What about non-magnetic insulators?
Electrical polarization: another simple Berry phase in solids
(Will eventually give another picture of topological insulators)

Sum the integral of A over bands: in one spatial dimension,

Intuitive idea: think about the momentum-position commutation relation,

There is an ambiguity of e per transverse unit cell, the “polarization quantum.”

Note: just as dA=F is a “closed form” and very useful to define Chern number,
in 4 dimensions there is a “second Chern form”

Fact from cohomology:
Odd dimensions have Chern-Simons forms that have a “quantum” ambiguity;
Even dimensions have Chern forms that are quantized.

A = �uk|− i∇k|uk� ≈ �r�

P =
�

v

e

�
dq

2π
�uv(q)| − i∂q|uv(q)�



But what does F do?
It is useful to get some intuition about what the Berry F means in simpler 
physical systems first.

Its simplest consequence is that it modifies the semiclassical equations of 
motion of a Bloch wavepacket:

a “magnetic field” in momentum space.

The anomalous velocity results from changes in the electron distribution within 
the unit cell: the Berry phase is connected to the electron spatial location.

Example I: the intrinsic anomalous Hall effect in itinerant magnets

Example II: helicity-dependent photocurrents in optically active materials
(Berry phases in nonlinear transport)

dxa

dt
=

1
�

∂�n(k)
∂ka

+ Fab
n (k)

dkb

dt
.



But what does F do?
Example I: the anomalous Hall effect in itinerant magnets

An electrical field E induces a transverse current through the anomalous 
velocity if F is nonzero averaged over the ground state.

A nonzero Hall current requires T breaking; microscopically this follows since 
time-reversal symmetry implies

Smit’s objection: in steady state the electron distribution is stationary; why 
should the anomalous velocity contribute at all?

(In a quantum treatment, the answer is as if dk/dt resulted only from the 
macroscopic applied field, which is mostly consistent with experiment)

dxa

dt
=

1
�

∂�n(k)
∂ka

+ Fab
n (k)

dkb

dt
.

Fab(k) = −Fab(−k).



But what does F do?
To try to resolve the question of what the semiclassical 
equation means:

Example II: helicity-dependent photocurrents in optically 
active materials
(Berry phases in nonlinear transport)

In a T-symmetric material, the Berry phase is still important
at finite frequency.  Consider circular polarization:

The small deviation in the electron distribution generated 
by the electrical field gives an anomalous velocity 
contribution that need not average to zero over the wave.

kx

ky

dk/dt

eE
v1

v0



Smit vs. Luttinger
The resulting formula has 3 terms, of which one is “Smit-type” (i.e., nonzero even 
with the full E) and two are “Luttinger-type”.

(JEM and J. Orenstein, 2009).  The full semiclassical transport theory of this effect 
was given by Deyo, Golub, Ivchenko, and Spivak (arXiv, 2009).

We believe that the circularly switched term actually explains a decade of 
experiments on helicity-dependent photocurrents in GaAs quantum wells.

Bulk GaAs has too much symmetry to allow the effect; these quantum wells show 
the effect because the well confinement breaks the symmetry
(“confinement-induced Berry phase”).

β =
∂F

∂kx

jdc =
βne3

2�2

1
1/τ2 + ω2

�
iω(ExE∗

y − EyE∗
x)x̂

+1/τ(ExE∗
y + EyE∗

x)x̂ + |Ex|2ŷ
�
.



Confinement-induced Berry phases

Bulk GaAs has too much symmetry to 
allow the effect; these quantum wells 
show the effect because the well 
confinement breaks the symmetry
(“confinement-induced Berry phase”).

Our numerics and envelope 
approximation suggest
a magnitude of 1 nA for incident power 
1W in a (110) well, which is consistent 
with experiments by S. D. Ganichev et al. 
(Regensburg).

Only one parameter of GaAs is needed 
to describe F at the Brillouin zone origin:
symmetries force

(0,0,a)

(a
/2

,-a
/2

,0
)

(a)

(b)

(Å3)

∂Ω
∂k

Width (Å)
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Envelope approx.
0.5 eV triangular
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F = λ
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�
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Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)

This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle θ is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or π.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.



Axion E&M, then and now

A T-invariant insulator can have two possible values: 0 or π.

These two values correspond to ordinary and topological 3D insulators.
(Qi, Hughes, and Zhang, 2008)

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

1987 2007



Graphene QHE
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we recall the extra fourfold degeneracy. 
(Columbia data shown below)

©!!""#!Nature Publishing Group!

!

Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.
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Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

Topological insulator slab

E j

E j

B

σxy = (n +
θ

2π
)
e2

h

σxy = (m− θ

2π
)
e2

h



Topological response
Idea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term

that is measured by the orbital magnetoelectric polarizability

and computed by integrating the “Chern-Simons form” of the Berry phase

(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

θ
e
2

2πh
=

∂M

∂E
=

∂

∂E

∂

∂B
H =

∂P

∂B

(2)θ = − 1
4π

�

BZ
d3k �ijk Tr[Ai∂jAk − i

2
3
AiAjAk]



Topological response
Many-body definition: the Chern-Simons or second Chern formula does not directly 
generalize.  However, the quantity dP/dB does generalize:
a clue is that the “polarization quantum” combines nicely with the flux quantum.

So dP/dB gives a bulk, many-body test for a topological insulator.

(Essin, JEM, Vanderbilt 2009)

∆P

B0
=

e/Ω
h/eΩ

= e2/h.

e2

h

= contact resistance in 0D or 1D
= Hall conductance quantum in 2D
= magnetoelectric polarizability in 3D



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:

We indeed found the “Chern-Simons term” from the semiclassical approach.

But in that approach, it is not at all clear why this should be the only magnetoelectric term 
from orbital motion of electrons.

More precisely: on general symmetry grounds, it is natural to decompose the tensor
into trace and traceless parts

The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;
cf. M. Fiebig and N. Spaldin)

But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...

∂P i

∂Bj
=

∂Mj

∂Ei
= αi

j = α̃i
j + αθδ

i
j .



Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., 1002.0290)
For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, 1002.0300. 

The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.

Not inconsistent with previous results:
in topological insulators, time-reversal means that only the Berry phase term survives.

There is an “ordinary part” and a “topological part”, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.
Both parts are nonzero in multiferroic materials.

α
i
j = (αI)i

j + αCSδ
i
j

(αI)i
j =

�

n occ
m unocc

�

BZ

d
3
k

(2π)3
Re

�
�unk|e �ri

k|umk��umk|e(vk×�rk)j − e(�rk × vk)j − 2i∂H
�
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j |unk�
Enk − Emk
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Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,
including contributions of all symmetries (Essin, Turner, Vanderbilt, JEM, 2010).

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g., in Cr2O3 
(Obukhov, Hehl, et al.).

Example of the ionic “competition”: BiFeO3

Can make a 2x2 table of “magnetoelectric mechanisms”:
(ignore nuclear magnetism)

θ ≈ π/24 P

electronic P, 
orbital M

ionic P
orbital M

electronic P, 
spin M

ionic P
spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.
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The competition:
BiFeO3 , a high-T multiferroic

Coupled polar (P), antiferromagnetic 
(L), and ferromagnetic (M) orders 

BiFeO3 BULK
 

• Rhombohedral R3c: a=3.96Å, α=89.46º
• No inversion symmetry, but “close”
•TN~ 650K; TC ~ 1120K
• Spiral, canted AFM order 
• P ~ 6  µC/cm2

BiFeO3 FILM on (100) SrTiO3

 
• Tetragonal distortion  a=3.91Å, c=4.06Å
• Homogeneous, canted AFM order
• Giant ME effect: P ~ 90  µC/cm2

P

M=M1+M2

L=M1-M2

Figs. courtesy R. Ramesh

Electrical coupling to fast (AF) spin waves
(R. de Sousa and JEM, PRB 08, PRL 09)



Topological insulators connect many fields.

3D topological insulators

Thermoelectricity
Graphene
(Dirac fermions)

Spintronics

Magnetoelectric and multiferroic phenomena/
half-integer QHE at surfaces

∆LEM =
θe2

2πh
E · B =

θe2

16πh
�αβγδFαβFγδ.

A “spinoff”: theory of orbital magnetoelectricity

New particles &
topological order



Interactions and new particles

Topological mechanism for emergence of new particles

Alternative to standard mechanisms, e.g., establish an order parameter and 
“Goldstone bosons” (e.g., phonon)

1. Anyonic (fractional statistics) quasiparticles in the FQHE

2. Majorana fermions in non-Abelian FQHE and p+ip superconductor

INTERLUDE

3. New states/materials with interactions



“Nonperturbative” interactions
“Advanced” topological order and quantum computing

A history of theoretical efforts to understand quantum Hall physics:

1. Integer plateaus are seen experimentally (1980).

Theorists find profound explanation why integers will always be seen.
Their picture involves nearly free electrons with ordinary fermionic statistics.

2. Fractional plateaus are seen experimentally (1983).
Eventually many fractions are seen, all with odd denominators.

Theorists find profound explanation why odd denominators will always be seen.
The picture (Laughlin) involves an interacting electron liquid that hosts 
“quasiparticles” with fractional charge and fractional “anyonic” statistics.

3. A plateau is seen when 5/2 Landau levels are filled (1989).
Theorists find profound explanation: an interacting electron liquid that hosts 
“quasiparticles” with non-Abelian statistics.

What does fractional or non-Abelian statistics mean?  Why is 2D special?

(Essin, JEM, Vanderbilt 2009)





Statistics in 2D

What makes 2D special for statistics? (Leinaas and 
Myrheim, 1976)

Imagine looping one particle around another to detect 
their statistics.  In 3D, all loops are equivalent.

In 2D, but not in 3D, the result can depend on the “sense” 
of the looping (clockwise or counterclockwise).
Exchanges are not described by the permutation group, 
but by the “braid group”.

The effect of the exchange on the ground state need not 
square to 1.  “Anyon” statistics: the effect of an exchange 
is neither +1 (bosons) or -1 (fermions), but a phase.

eiθ

Most fractional quantum Hall states, such as the Laughlin state,
host “quasiparticles” with anyonic statistics.



Degenerate ground states
A beautiful wavefunction is likely to describe the ground state at filling 5/2.
(Greg) Moore and Read, 1990. 

The 5/2 state becomes degenerate when quasiparticles are added.  Braiding 
quasiparticles can act as a matrix on the space of ground states.

Mathematically, the braid group with more than 3 particles is “non-Abelian”: different 
exchanges can be described by non-commuting matrices.

The non-Abelian statistics at 5/2 may have been seen experimentally earlier this year.
(Willett et al., 2009)



Topological quantum computing

A classical computer carries out logical 
operations on classical “bits”.

A quantum computer carries out unitary 
transformations on “qubits” (quantum bits).

A remarkable degree of protection from errors 
can be obtained by implementing these via 
braiding of non-Abelian quasiparticles.

One type of quasiparticle in the Moore-Read 
state is a “Majorana fermion”:
it is its own antiparticle
and is “half” of a normal fermion.



The hunt for the Majorana fermion
Prehistory:
We can imagine splitting one ordinary spinless fermion (a “Dirac fermion”) into two 
Majorana fermions as

Then these “Majorana fermions” are their own antiparticles.

We can always rewrite Dirac fermions in this form, but when is it 
physically meaningful?  When are there isolated Majorana fermions?

γ1 =
c + c†√

2
, γ2 = i

c† − c√
2



Majorana fermions as fundamental particles

Neutrinoless double beta decay:

If the neutrino is a Majorana fermion, the neutrino and antineutrino are the same 
particle.

Then the two (anti-)neutrinos produced in a double beta decay of an element such as 
U-238 can annihilate as particle and antiparticle.

There is at least one claim from 2001 that neutrinoless double beta decay has actually 
been observed; future experiments are a high priority.

Gran Sasso



Majorana fermions as emergent particles

Several condensed matter systems are believed to support Majorana fermion excitations.

The first was an unusual fractional quantum Hall state at 5/2 filled Landau levels, first 
observed around 1990.  In the most popular theoretical model for this state, there are 
Majorana fermion quasiparticles.

A 2009 experiment (R. L. Willett et al., PNAS) constructing an interferometer to “braid” 
one Majorana fermion around another supports this theoretical model, but is rather 
indirect.



Quantum computing and memory

Majoranas for memory: 1 spinless Dirac fermion = one “qubit”:
there are two states, occupied and empty

Majoranas alone might not be quite good enough for a universal “quantum 
computer”--not enough operations in the braid group?

Can either try to fix this or try to find more complex states with a 
“universal” representation of the braid group (12/5, 4/7)

γ1 = (c† + c), γ2 = i(c† − c)



Note that most of the special physics of the Moore-Read state can be understood 
from BdG theory of a p+ip superconductor (Read and Green, 1999).

In general, Majorana fermions appear as zero-energy solutions of Bogoliubov-de 
Gennes equation for quasiparticles in a superconductor

Hope for quantum computing?

doubled (BdG) spectrum
bands can become degenerate 
away from E=0

E=0

H =
1
2
v†

G̃v

n p

-1

-1
+1

-1

-1
+1

Majorana fermion = “half” an ordinary fermion; 
appears in superconductors that are “half” an 

ordinary superconductor



New particles from interactions
using topological insulators

I. Correlation and new particles:
There are two ways to make “Majorana fermions” from topological 
insulators:

Method I: start from a different “universality class”, a topological 
superconductor driven by interactions (3He is an example)

Method II: build the Majorana fermions using “ordinary” topological 
insulators and “normal” superconductors

2. Can make a new type of vortex just by biasing a thin film of 
topological insulator.



Proximity effect and quantum computing

A natural question is whether the surface of a Z2 topological insulator is 
stable beyond single-particle models.

Time-reversal-breaking perturbations (coupling to a magnetic material or 
magnetic field) certainly can gap the surface modes.

What about coupling to a superconductor?

Idea: an s-wave proximity effect term

couples within the low-energy chiral fermion, and hence gives a “spinless” 
p-wave superconductor (Fu and Kane, PRL 2007).

E=μ

H =
�

k

(∆ck↑c−k↓ + h.c.)

kx

ky



Majorana states

SC

TI

Topological quantum computing

It turns out that the core of a magnetic vortex in a two-dimensional “p+ip” 
superconductor can have a Majorana fermion.  (But we haven’t found one yet.)

However, a superconducting layer with this property exists at the boundary between a 3D 
topological insulator and an ordinary 3D superconductor (Fu and Kane, 2007).

(Recent theoretical work by Sau et al. (Das Sarma) suggests that one doesn’t even need a 
topological insulator.  Another piece of breaking news: FQHE observed in graphene.)



“Interacting” topological 
insulators

There may be many topological insulators in correlated materials classes:

Topological superconductor? (Cu-doped Bi2Se3)

“Topological antiferromagnets”: GdPtBi? (Mong, Essin, JEM)

Topological Kondo insulators (Dzero, Galitski, Colema.)

Topological Mott insulator (TI of spinons) (Pesin and Balents in 3D; Raghu et 
al. in 2D)

What about interactions in existing materials?



The future

1. “Topological insulators” exist in two and three dimensions in zero magnetic field.

In the 3D case, they have surface Dirac fermions with an unusual spin structure.
Understanding this leads to some insight into magnetoelectricity in general.

2. Are there correlated topological insulators and superconductors?
Are there “fractional” topological insulators?

Can we use these materials to create new particles, as in the FQHE?


