
Light-induced gauge potentials and optical flux lattices for ultracold atoms

Gediminas Juzeliūnas

Institute of Theoretical Physics and Astronomy, Vilnius University,
Vilnius, Lithuania

Newspin 2, 17 December 2011

Collaboration

*(in the area of the artificial magnetic fields for
ultracold atoms)*

- **P. Öhberg & group, Heriot-Watt University, Edinburgh**
- **M. Fleischhauer & group, TU Kaiserslautern,**
- **L. Santos & group, Universität Hannover**
- **J. Dalibard, F. Gerbier & group, ENS, Paris**
- **I. Spielman, D. Campbell, C. Clark and J. Vaishnav, B. Anderson, NIST, USA**
- **V. Galitski, UMD, USA**
- **M. Lewenstein, ICFO, ICREA, Barcelona**

Quantum Optics Group @ ITPA, Vilnius University

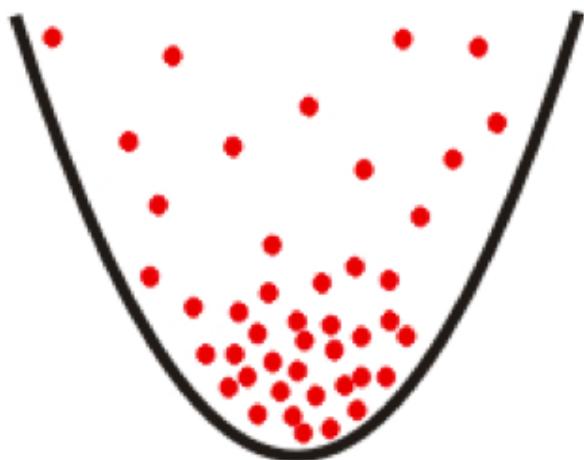
V. Kudriiasov, J. Ruseckas, G. J., A. Mekys, T. Andrijauskas
Not in the picture: V. Pyragas and S. Grubinskas

OUTLINE

- ❖ Background
- ❖ Gauge potentials using optical lattices
- ❖ Light-induced (Abelian) geometric gauge potentials (for ultracold atoms)
- ❖ Optical flux lattices (OFL)
 - ❖ Non-staggered artificial magnetic flux
 - ❖ Ways of producing of OFL
- ❖ Non-Abelian gauge potentials
- ❖ Conclusions

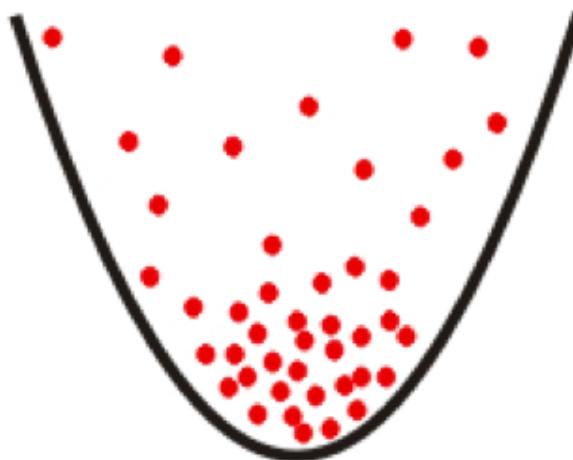
Cold atoms are trapped using:

1. (Parabolic) trapping potential *produced by magnetic or optical means*:

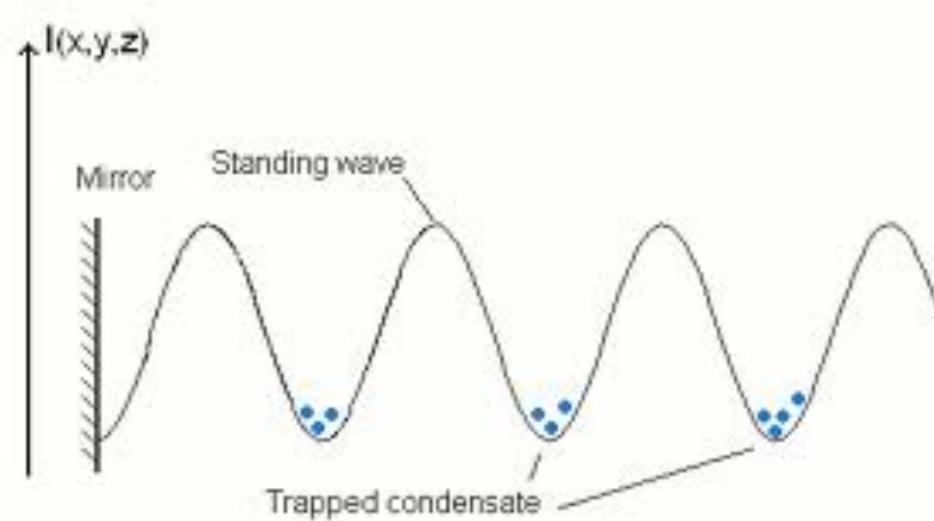


Cold atoms are trapped using:

1. (Parabolic) trapping potential *produced by magnetic or optical means*:



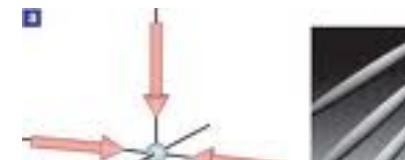
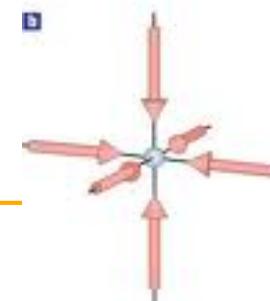
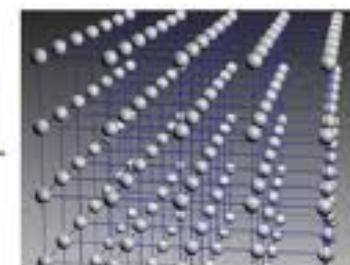
2. Optical lattice (periodic potential):



Optical lattices (ordinary): [Last 10 years]

- A set of counter-propagating light beams
(*off resonance to the atomic transitions*)

I. Bloch, Nature Phys. 1, 23 (2005)

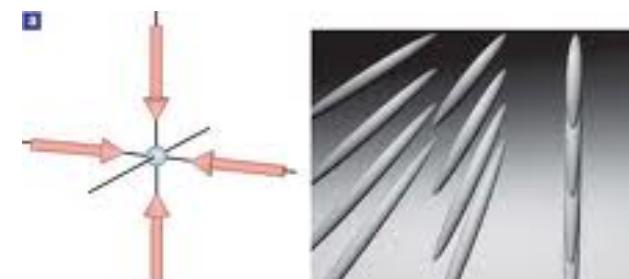
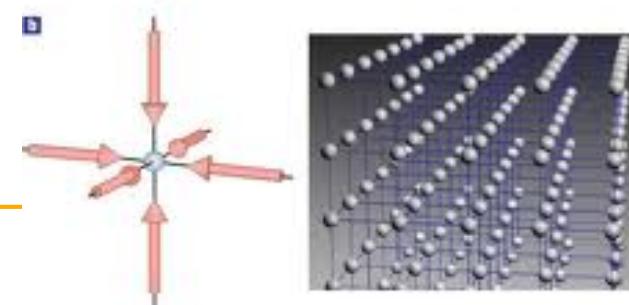


Optical lattices (ordinary)

- A set of counter-propagating light beams (*off resonance to the atomic transitions*)
- → Atoms are trapped at **intensity minima** (or **intensity maxima**) of the interference pattern (*depending on the sign of atomic polarisability*)

$$V_{dip}(\mathbf{r}) = -\mathbf{d} \cdot \mathbf{E}(\mathbf{r}) = -\alpha(\omega_L) |\mathbf{E}(\mathbf{r})|^2$$

I. Bloch, Nature Phys. 1, 23 (2005)



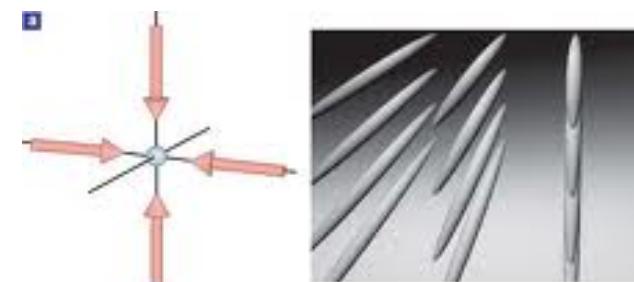
Optical lattices (ordinary)

- A set of counter-propagating light beams (*off resonance to the atomic transitions*)
- → Atoms are trapped at **intensity minima** (or **intensity maxima**) of the interference pattern (*depending on the sign of atomic polarisability*)

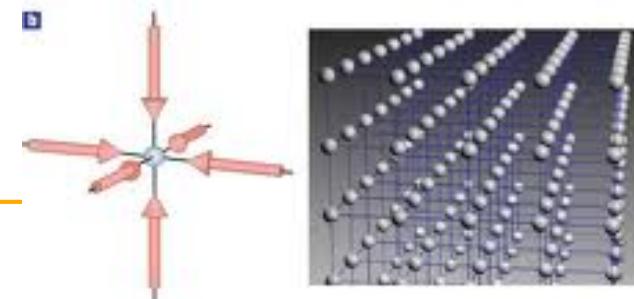
$$V_{dip}(\mathbf{r}) = -\mathbf{d} \cdot \mathbf{E}(\mathbf{r}) = -\alpha(\omega_L) |\mathbf{E}(\mathbf{r})|^2$$

I. Bloch, Nature Phys. 1, 23 (2005)

2D square optical lattice:



3D cubic optical lattice:



Optical lattices (more sophisticated)

- Triangular or hexagonal optical lattices using three light beams (propagagating at 120^0)

Optical lattices (more sophisticated)

- Triangular or hexagonal optical lattices using three light beams (propagagating at 120°)

Experiment:

New Journal of Physics

The open-access journal for physics

Ultracold quantum gases in triangular optical lattices

New Journal of Physics 12 (2010) 065025 (17pp)

C Becker^{1,3}, P Soltan-Panahi¹, J Kronjäger², S Dörscher¹,
K Bongs² and K Sengstock¹

nature
physics

ARTICLES

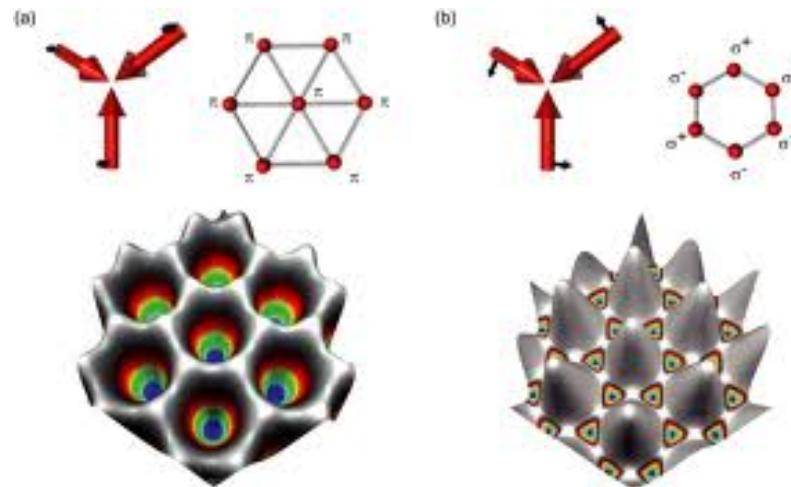
PUBLISHED ONLINE: 13 FEBRUARY 2011 | DOI:10.1038/NPHYS1916

Multi-component quantum gases in spin-dependent hexagonal lattices

P. Soltan-Panahi¹, J. Struck¹, P. Hauke², A. Bick¹, W. Plenkers¹, G. Meineke¹, C. Becker¹,
P. Windpassinger¹, M. Lewenstein^{2,3} and K. Sengstock^{1*}

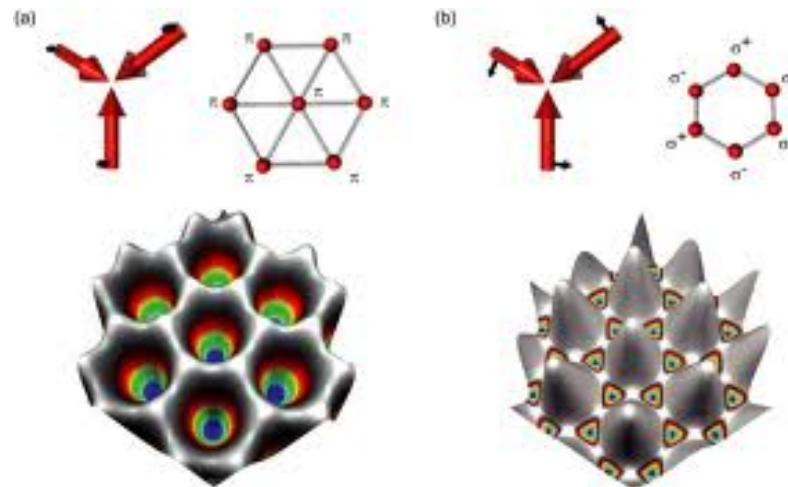
Optical lattices (more sophisticated)

- Triangular or hexagonal optical lattices using three light beams (propagagating at 120^0)



Optical lattices (more sophisticated)

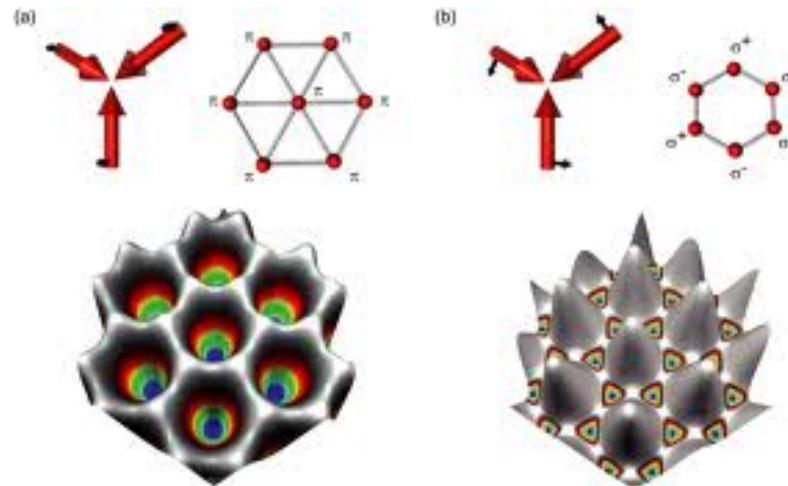
- Triangular or hexagonal optical lattice using three light beams (propagagating at 120^0)



- (a) Polarisations are perpendicular to the plane
→ Triangular lattice

Optical lattices (more sophisticated)

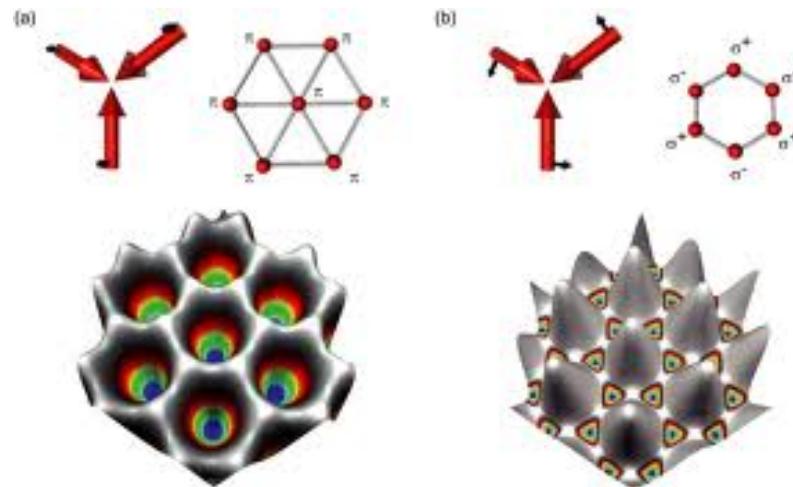
- Triangular or hexagonal optical lattice using three light beams (propagating at 120^0)



- (a) Polarisations are perpendicular to the plane
→ Triangular lattice
- (b) Polarisations are rotating in the plane
→ Hexagonal lattice:
→ Analogies with electrons in graphene

Optical lattices (more sophisticated)

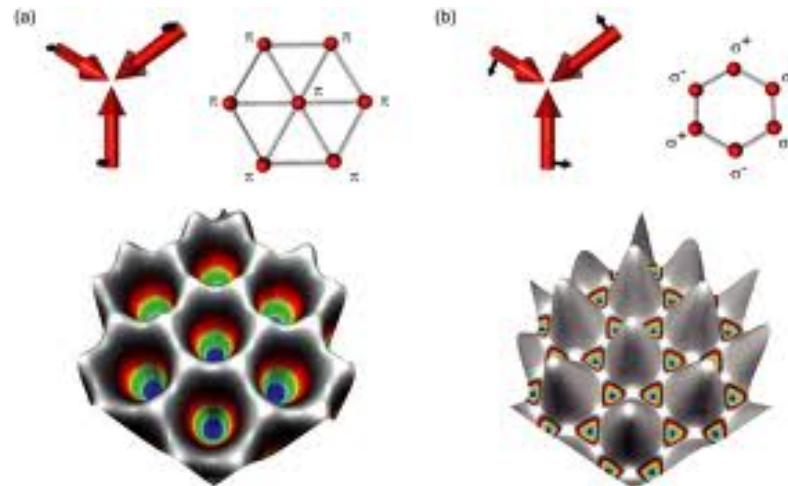
- Triangular or hexagonal optical lattice using three light beams (propagating at 120^0)



- (a) Polarisations are perpendicular to the plane
→ Triangular lattice
- (b) Polarisations are rotating in the plane
→ Hexagonal (spin-dependent) lattice

Optical lattices (more sophisticated)

- Triangular or hexagonal optical lattice using three light beams (propagating at 120^0)



- (a) Polarisations are perpendicular to the plane
→ Triangular lattice
- (b) Polarisations are rotating in the plane
→ Hexagonal (spin-dependent) lattice
- [traps differently atoms in different spin states]

Ultracold atoms

- Analogies with the solid state physics
 - Fermionic atoms \leftrightarrow Electrons in solids
 - Atoms in optical lattices – Hubbard model
 - Simulation of various many-body effects
- **Advantage :**
 - Freedom in changing experimental parameters that are often inaccessible in standard solid state experiments

Ultracold atoms

- Analogies with the solid state physics
 - Fermionic atoms \leftrightarrow Electrons in solids
 - Atoms in optical lattices – Hubbard model
 - Simulation of various many-body effects
- **Advantage :**
 - Freedom in changing experimental parameters that are often inaccessible in standard solid state experiments
 - e.g. number of atoms, atom-atom interaction, lattice potential

Trapped atoms - **electrically neutral** species

- No direct analogy with **magnetic** phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force)
- A possible method to create an **effective** magnetic field (an **artificial** Lorentz force):

Rotation

Trapped atoms - **electrically neutral** particles

- No direct analogy with **magnetic** phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force)
- A possible method to create an **effective** magnetic field (an **artificial** Lorentz force):
Rotation → Coriolis force →

Trapped atoms - **electrically neutral** particles

- No direct analogy with **magnetic** phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force)
- A possible method to create an **effective** magnetic field:
Rotation → Coriolis force
(Mathematically equivalent to Lorentz force)

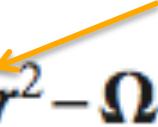
Trap rotation

Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]

$$H'_0 = p^2/(2M) + \frac{1}{2}M\omega_{\perp}^2 r^2 - \mathbf{\Omega} \cdot \mathbf{r} \times \mathbf{p}$$

Trapping potential



Trap rotation

Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]

$$H'_0 = \frac{p^2}{2M} + \frac{1}{2}M\omega_{\perp}^2 r^2 - \mathbf{\Omega} \cdot \mathbf{r} \times \mathbf{p}$$

Trapping potential

rotation vector

Trap rotation

Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]

$$H'_0 = \frac{p^2}{2M} + \frac{1}{2}M\omega_{\perp}^2 r^2 - \mathbf{\Omega} \cdot \mathbf{r} \times \mathbf{p}$$

or

Trapping potential

rotation vector

$$H'_0 = \frac{(\mathbf{p} - M\mathbf{\Omega} \times \mathbf{r})^2}{2M} + \frac{1}{2}M(\omega_{\perp}^2 - \Omega^2)r^2$$

Effective vector potential

Trap rotation

Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]

$$H'_0 = \frac{p^2}{2M} + \frac{1}{2}M\omega_{\perp}^2 r^2 - \mathbf{\Omega} \cdot \mathbf{r} \times \mathbf{p}$$

or

Trapping potential

rotation vector

$$H'_0 = \frac{(\mathbf{p} - M\mathbf{\Omega} \times \mathbf{r})^2}{2M} + \frac{1}{2}M(\omega_{\perp}^2 - \Omega^2)r^2$$

Effective vector potential

(constant $B_{\text{eff}} \sim \Omega$)

Coriolis force (equivalent to Lorentz force)

Trap rotation

Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]

$$H'_0 = \frac{p^2}{2M} + \frac{1}{2}M\omega_{\perp}^2 r^2 - \mathbf{\Omega} \cdot \mathbf{r} \times \mathbf{p}$$

or

Trapping potential

rotation vector

$$H'_0 = \frac{(\mathbf{p} - M\mathbf{\Omega} \times \mathbf{r})^2}{2M} + \frac{1}{2}M(\omega_{\perp}^2 - \Omega^2)r^2$$

Effective vector potential

(constant $B_{\text{eff}} \sim \Omega$)

Centrifugal potential

(anti-trapping)

Coriolis force (equivalent to Lorentz force)

Trap rotation:

Summary of the main features

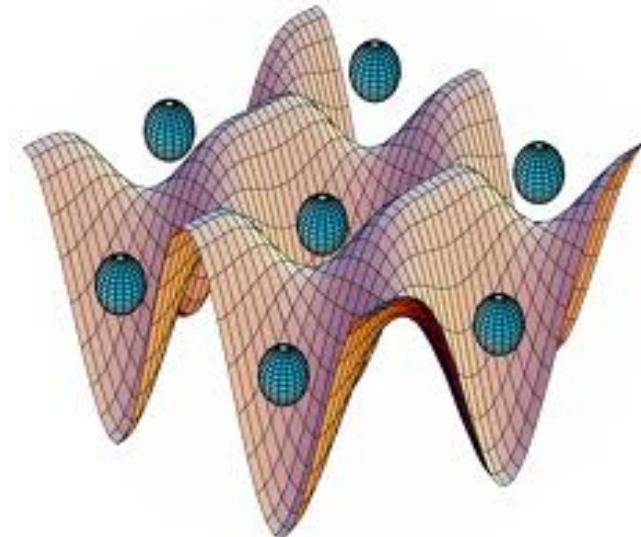
- Constant B_{eff} : $B_{\text{eff}} \sim \Omega$
- Trapping frequency: $\omega_{\text{eff}} = \sqrt{\omega_{\perp}^2 - \Omega^2}$
- $\Omega \rightarrow \omega_{\perp}$ Landau problem

ROTATION

- Can be applied to ultracold atoms both in usual traps and also in optical lattices

(a) *Ultracold atomic cloud (trapped):*

(b) *Optical lattice:*

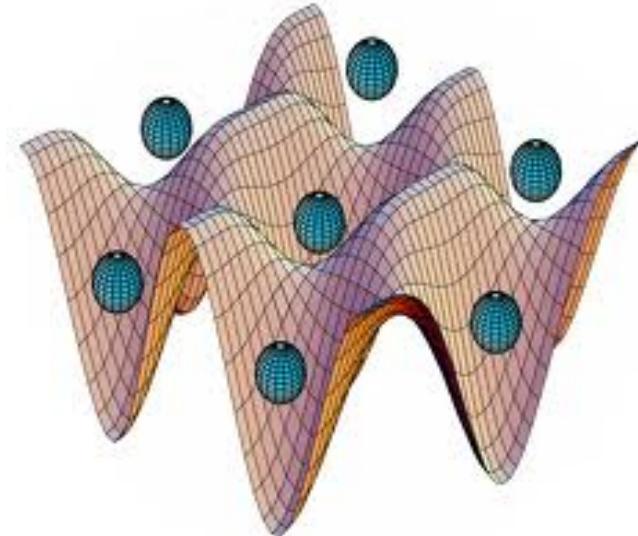


ROTATION

- Can be applied to ultracold atoms both in usual traps and also in optical lattices

(a) *Ultracold atomic cloud (trapped):*

(b) *Optical lattice:*



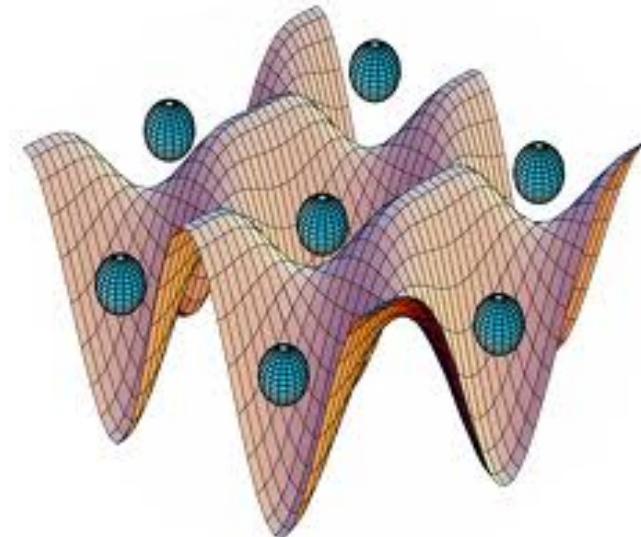
- Not always convenient to rotate an atomic cloud
- Limited magnetic flux

ROTATION

- Can be applied to ultracold atoms both in usual traps and also in optical lattices

(a) *Ultracold atomic cloud (trapped):*

(b) *Optical lattice:*



- Not always convenient to rotate an atomic cloud
- Limited magnetic flux → Other methods are desirable

Effective magnetic fields without rotation

■ Using (unconventional) optical lattices

Initial proposals:

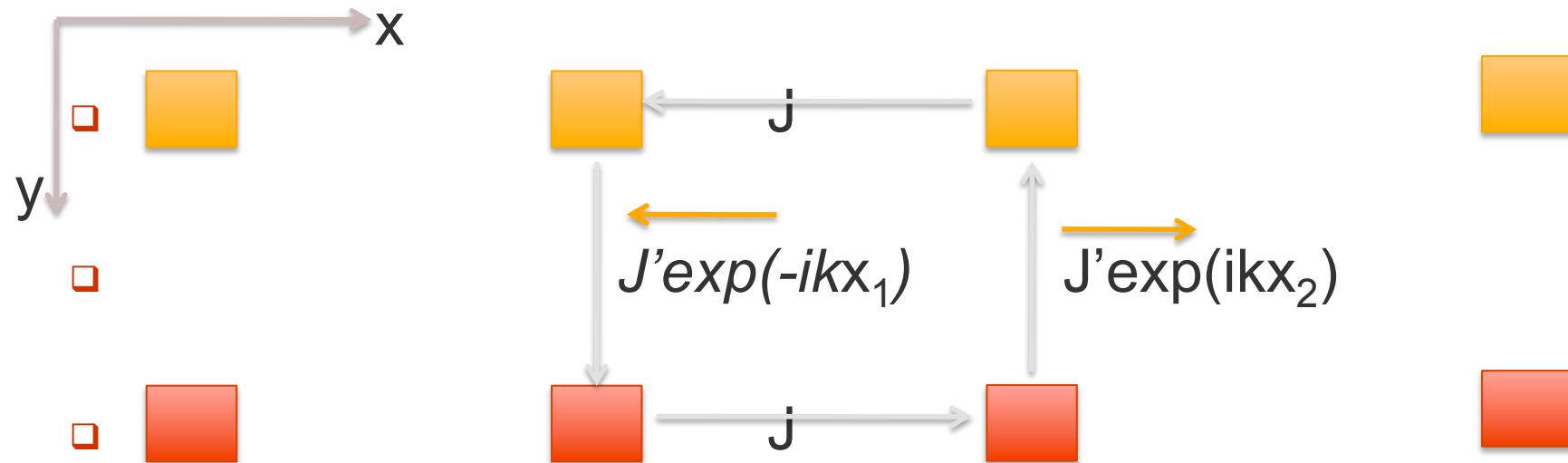
- J. Ruostekoski, G. V. Dunne, and J. Javanainen, Phys. Rev. Lett. 88, 180401 (2002)
- D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
- E. Mueller, Phys. Rev. A 70, 041603 (R) (2004)
- A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, 086803 (2005)

- B_{eff} is produced by inducing an **asymmetry** in atomic transitions between the lattice sites.
- **Non-vanishing phase** for atoms moving along a closed path on the lattice (a plaquette)
- → Simulates non-zero magnetic flux → $B_{\text{eff}} \neq 0$

Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

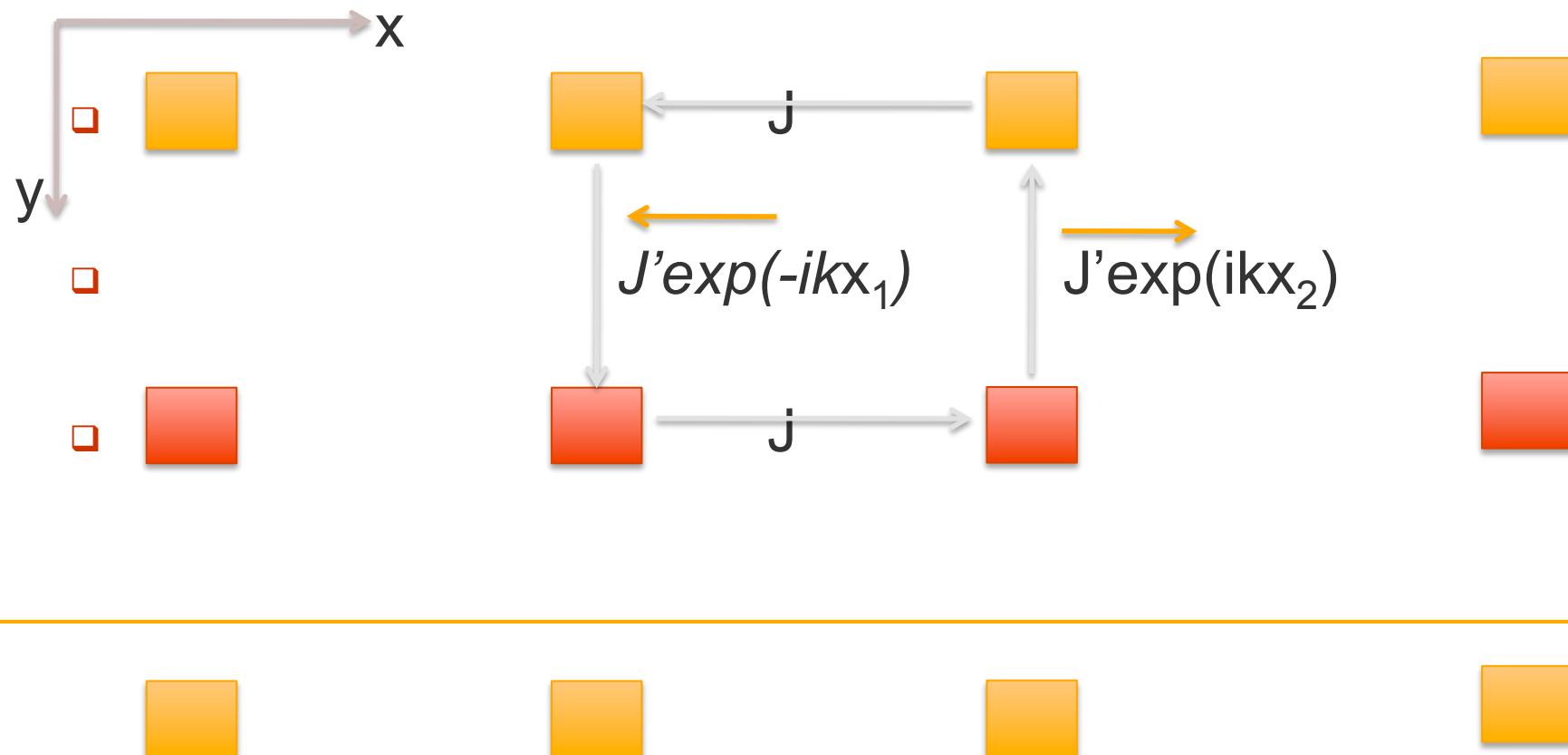


Atoms in different internal states (**red** or **yellow**) are trapped at different lattice sites

Effective magnetic fields without rotation

■ Optical square lattices

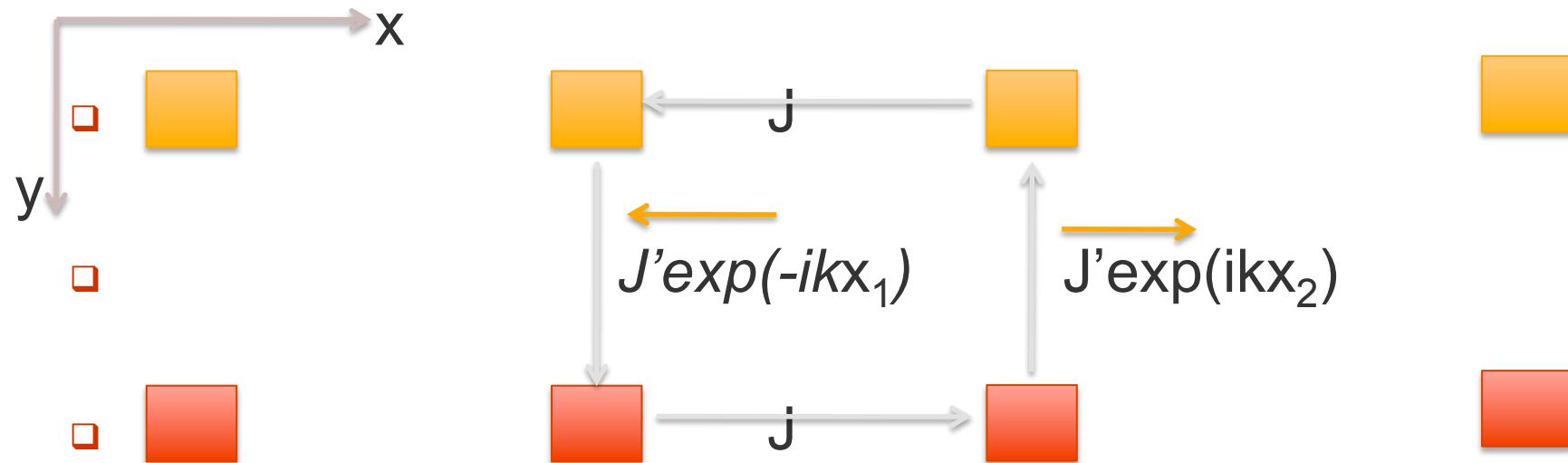
- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).



Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

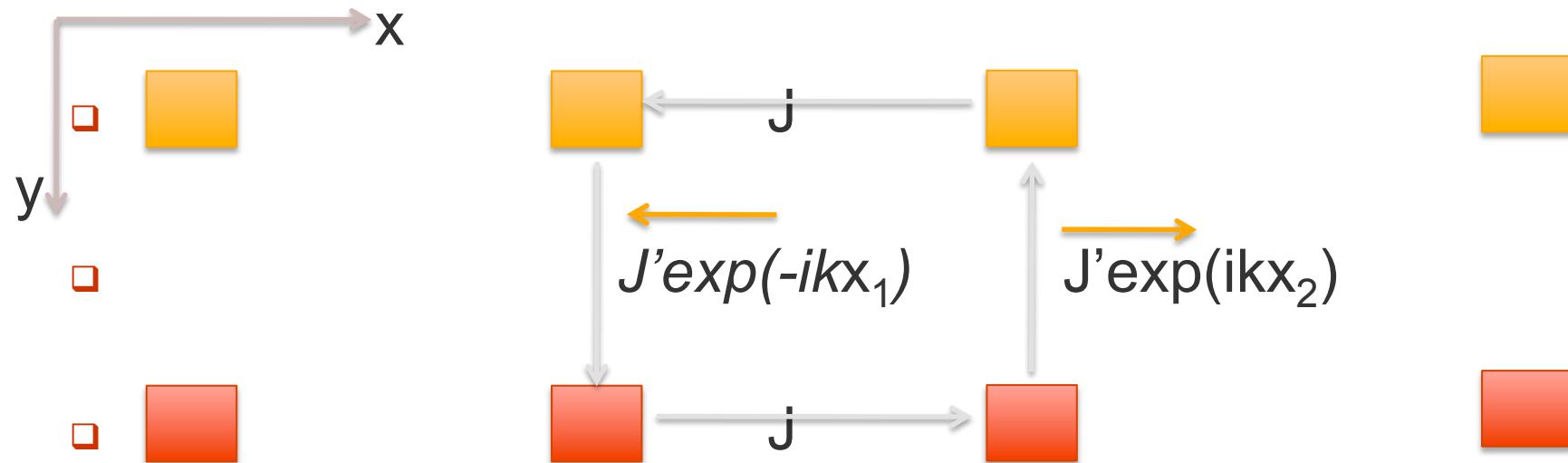


Atoms in different internal states (**red** or **yellow**) are trapped at different lattice sites

Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

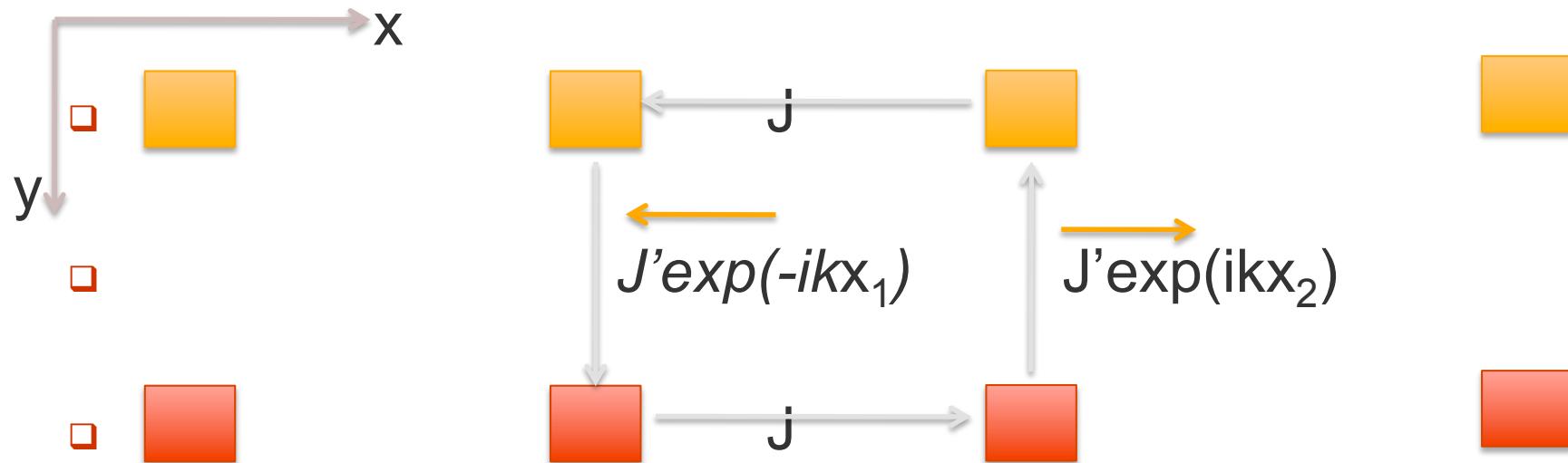


- Non-vanishing phase for the atoms moving over a plaquette: $S=k(x_2-x_1)=ka$

Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

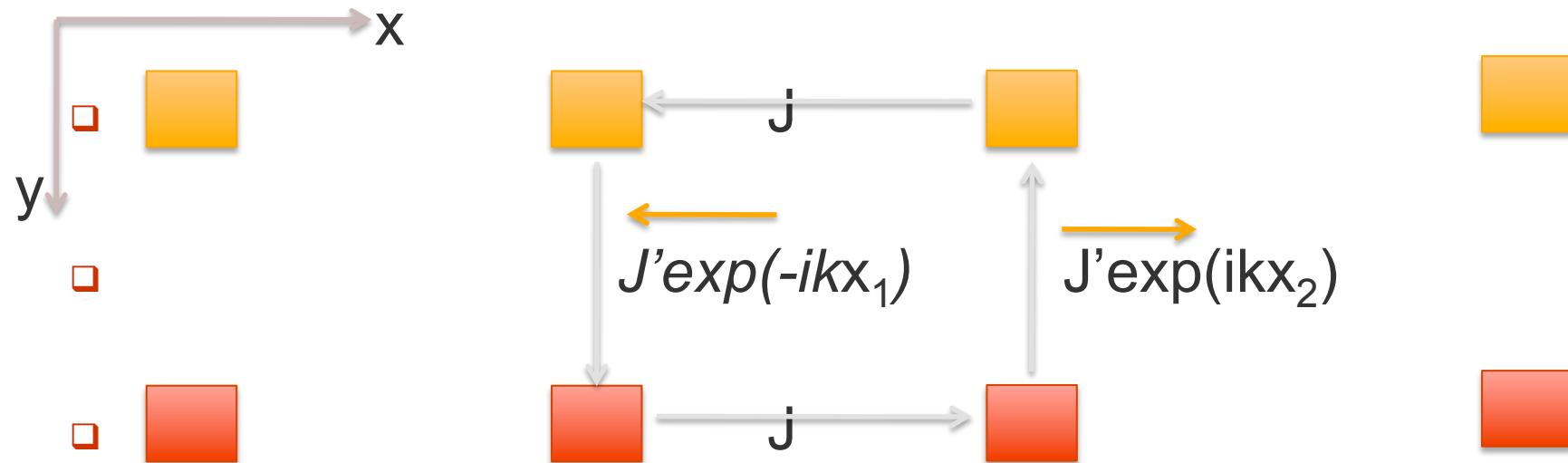


- Non-vanishing phase for the atoms moving over a plaquette: $S=k(x_2-x_1)=ka$
- → Simulates non-zero magnetic flux (over plaquette)

Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

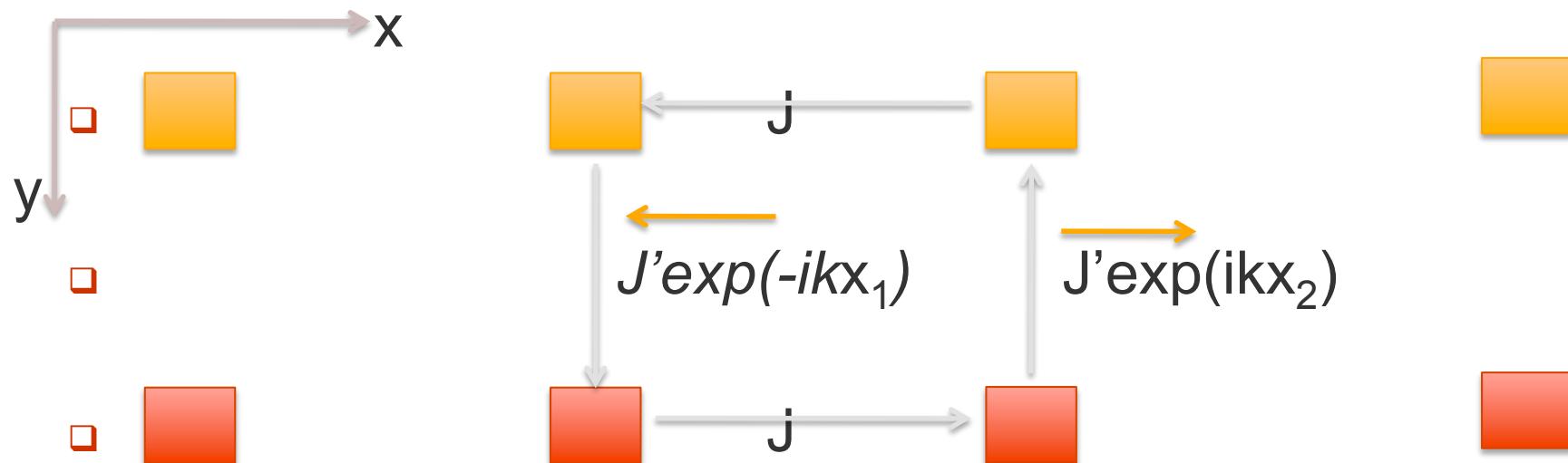


Staggered flux!

Effective magnetic fields without rotation

■ Optical square lattices

- D. Jaksch and P. Zoller, New J. Phys. **5**, 56 (2003)
- J. Dalibard and F. Gerbier, NJP **12**, 033007 (2010).
- -Ordinary tunneling along x direction (J).
- -Laser-assisted tunneling between atoms in different internal states along y axis (with recoil along x).

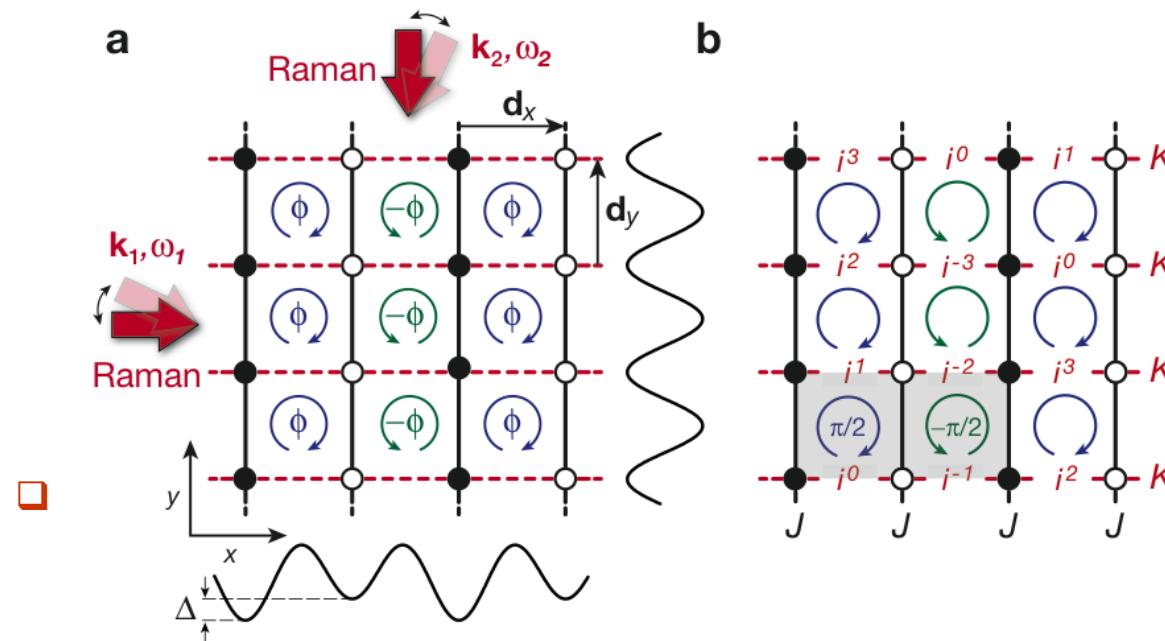


- Non-vanishing phase for the atoms moving over a plaquette: $S=k(x_2-x_1)=ka \rightarrow$ non-zero magnetic flux:
- Experiment: M. Aidelsburger et al., PRL 107, 255301 (2011)

Effective magnetic fields without rotation

■ Optical square lattices

- Experiment: M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Yu-Ao Chen and I Bloch, PRL 107, 255301 (2011)
- -Ordinary tunneling along y direction.
- -Laser-assisted tunneling along x axis (**with recoil**).



- → Non-zero magnetic flux over a plaquette

Effective magnetic fields without rotation

■ Optical lattices:

The method can be extended to create

Non-Abelian gauge potentials

(Laser assisted, state-sensitive tunneling)

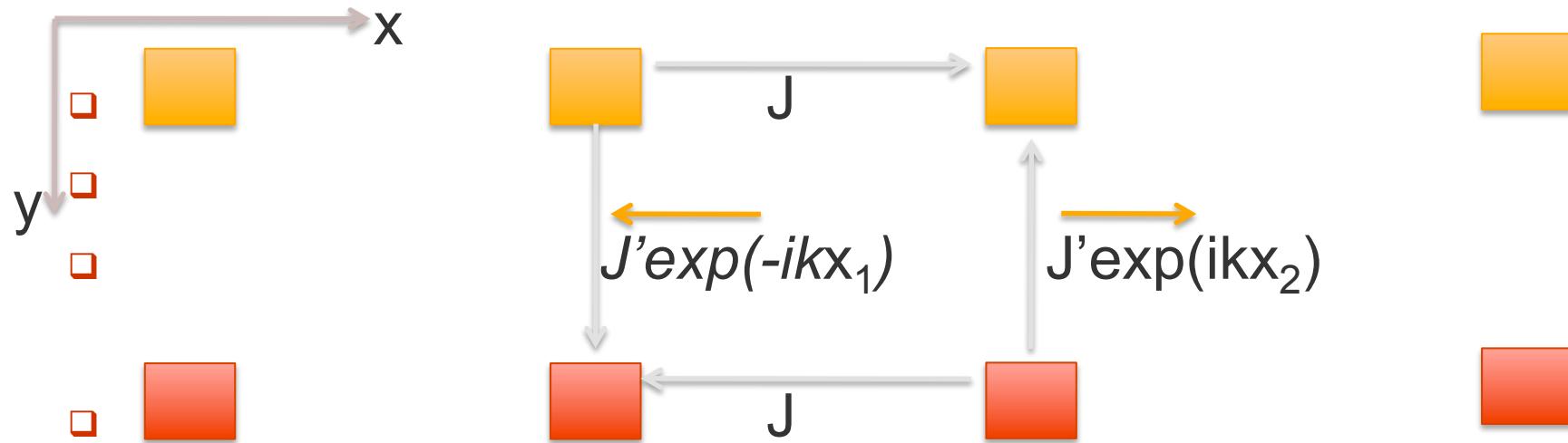
A proposal:

- K. Osterloh, M. Baig, L. Santos, P. Zoller and M. Lewenstein, Phys. Rev. Lett. **95**, 010403 (2005)

Effective magnetic fields without rotation

■ Optical square lattices

- ❑ -Ordinary tunneling along x direction (J).
- ❑ -Laser-assisted tunneling along y axis
(with recoil along x).

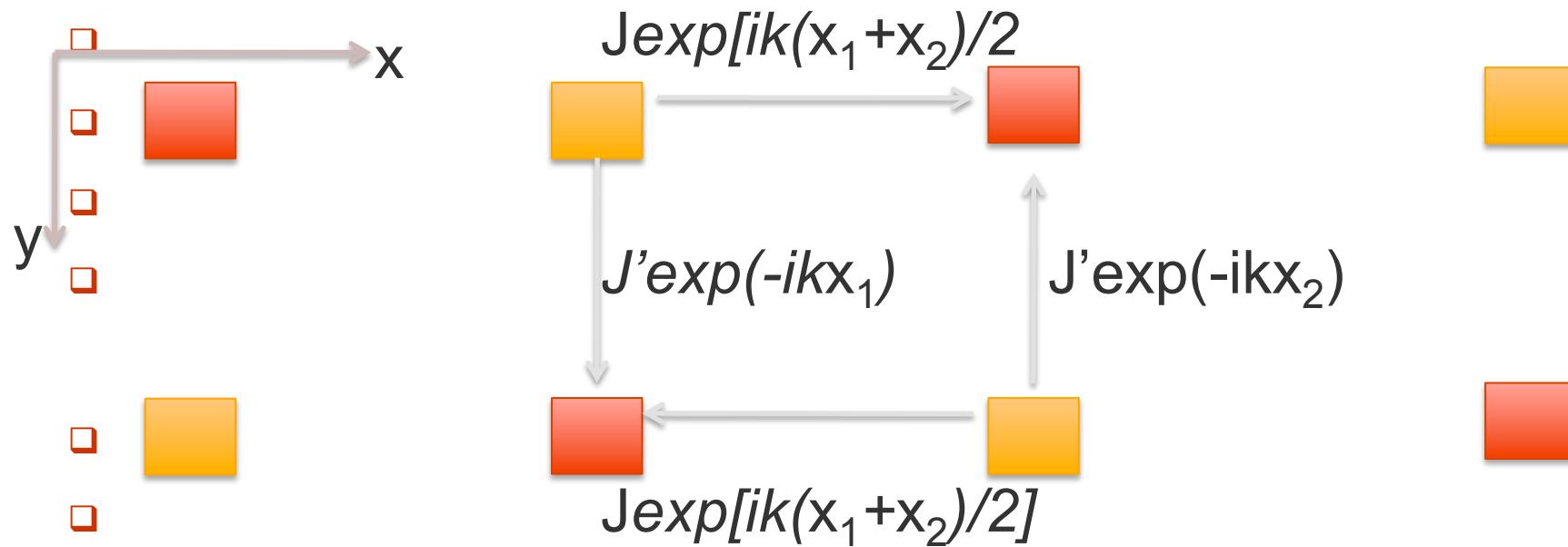


- ❑ Non-vanishing phase for the atoms moving over a (square) plaquette: $S=k(x_2-x_1)=ka$
- ❑ → Simulates non-zero magnetic flux

Effective magnetic fields without rotation

■ Optical square lattices

- However if **laser-assisted tunneling** is along both x and y axis (with recoil e.g. along x)

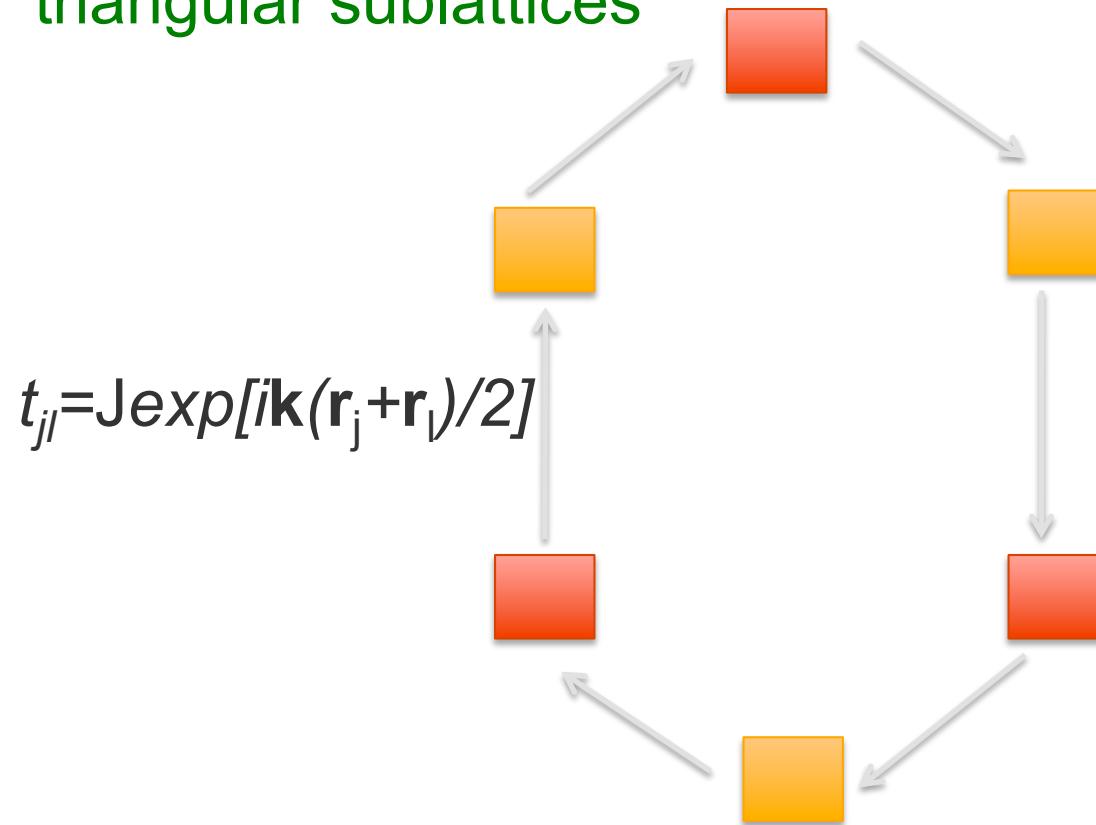


- Vanishing phase for the atoms moving over a plaquette: $S=0$
- → Zero magnetic flux

Effective magnetic fields without rotation

■ (Similarly) Optical hexagonal lattices

- Laser-assisted tunneling of atoms trapped in two triangular sublattices

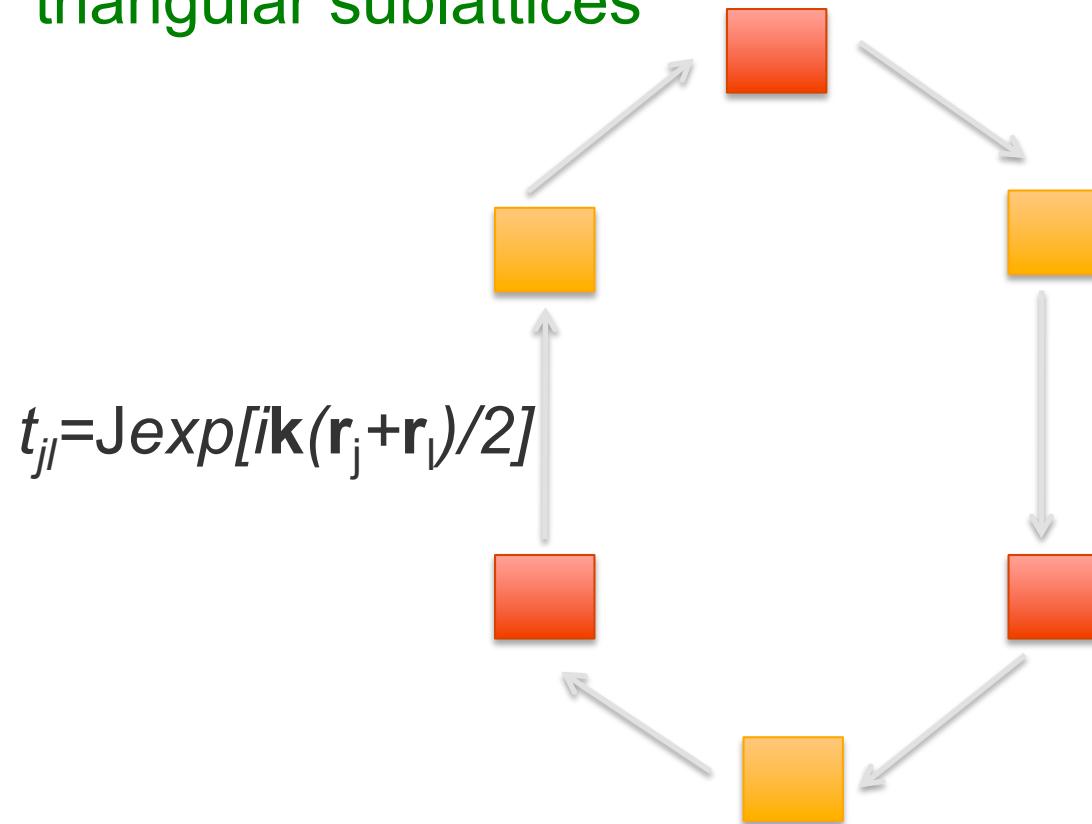


- Vanishing phase for the atoms moving over a plaquette: $S=0 \rightarrow$ Zero magnetic flux

Effective magnetic fields without rotation

■ (Similarly) Optical hexagonal lattices

- Laser-assisted tunneling of atoms trapped in two triangular sublattices

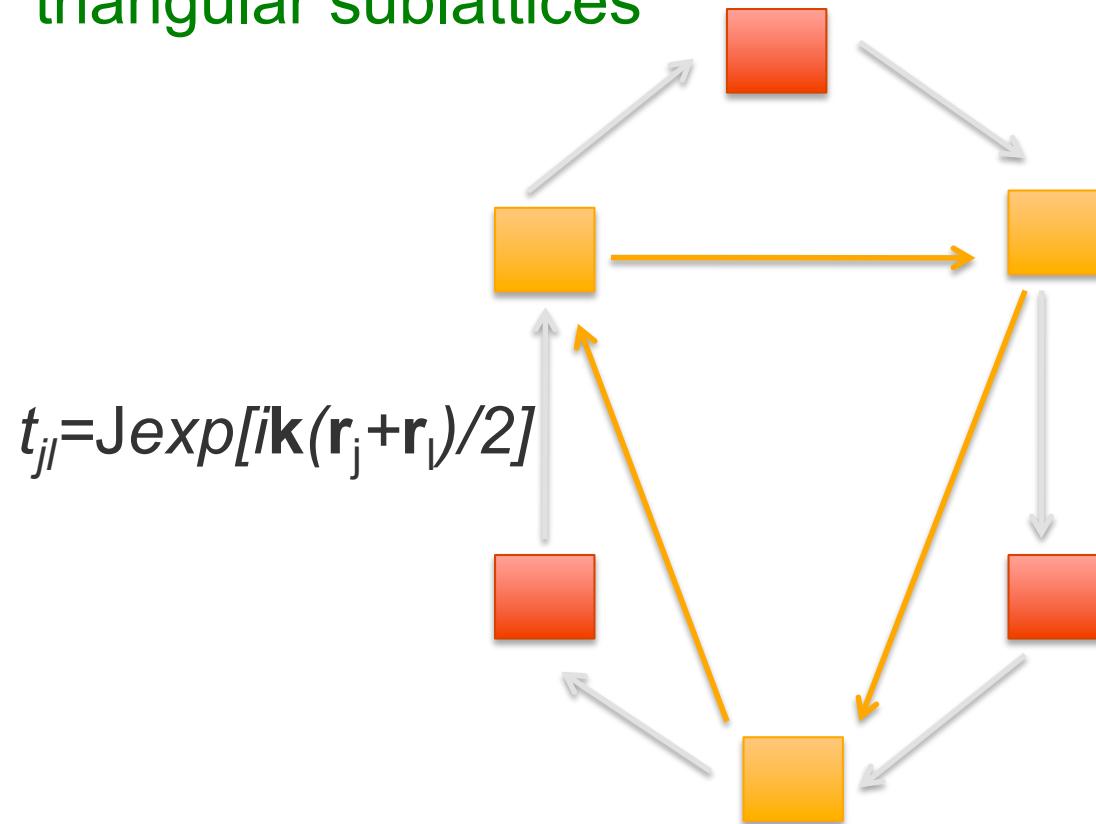


- Vanishing phase for the atoms moving over a plaquette: $S=0$ \rightarrow Zero magnetic flux
- unless there is (a real-valued) NNN coupling t_a

Effective magnetic fields without rotation

■ (Similarly) Optical hexagonal lattices

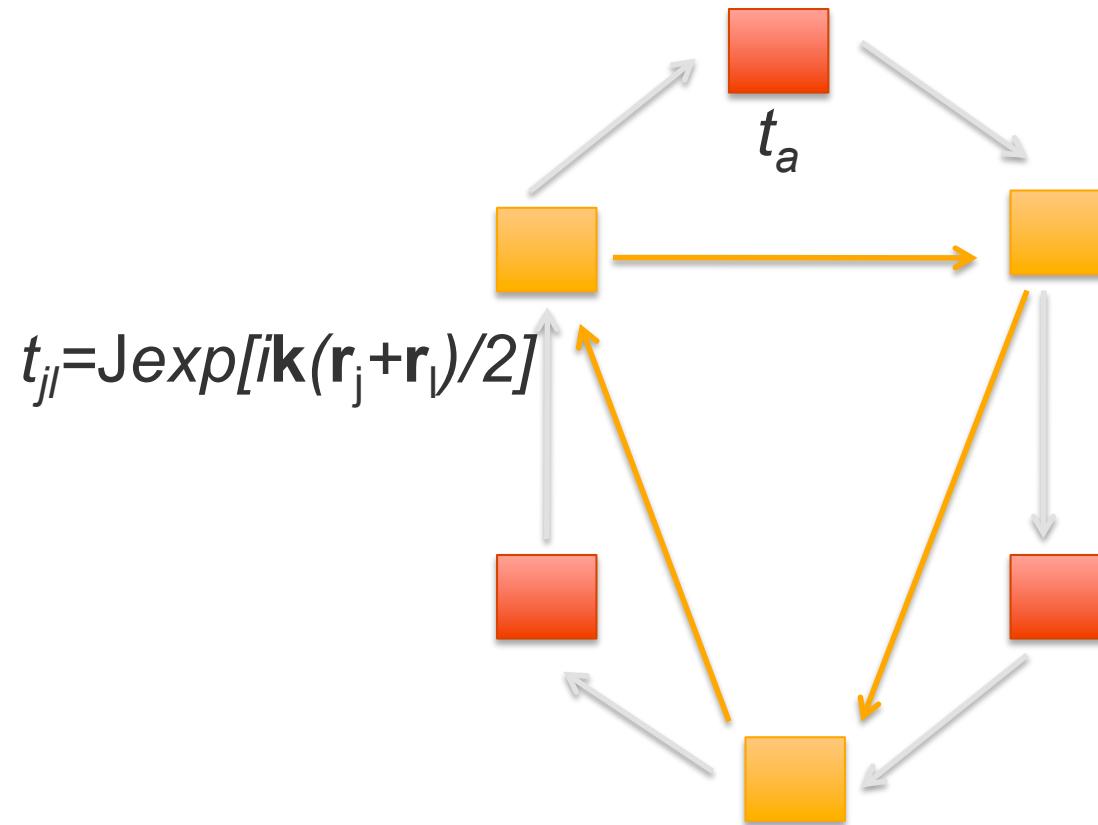
- Laser-assisted tunneling of atoms trapped in two triangular sublattices



- Vanishing phase for the atoms moving over a plaquette: $S=0$ \rightarrow Zero magnetic flux
- unless there is (a real-valued) NNN coupling t_a

Effective magnetic fields without rotation

- (Similarly) Optical hexagonal lattices
- If there is (a real-valued) NNN coupling $t_a \rightarrow$

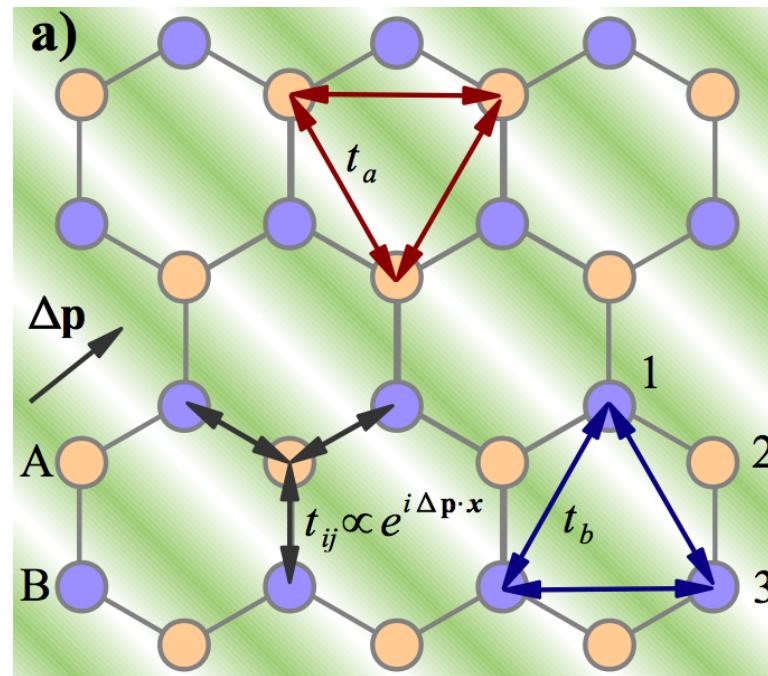


- Non-vanishing phase for the atoms moving over a triangular plaquette: $S=0 \rightarrow$ Non-zero magnetic flux

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling of atoms trapped in two triangular sublattices



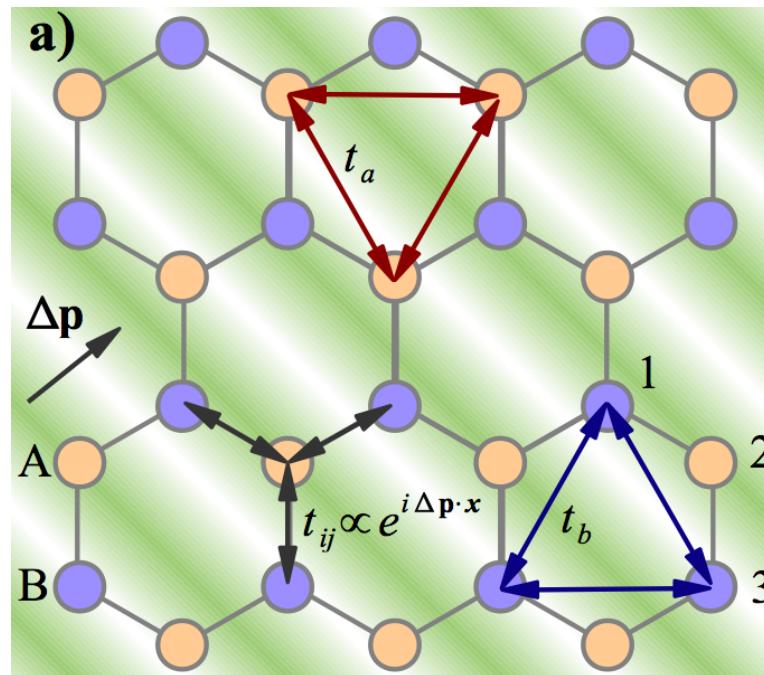
- Vanishing phase for the atoms moving over hexagonal plaquettes: $S=0$ \rightarrow Zero magnetic flux

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- If NNN tunneling between the same sub-lattices

(t_a and t_b)

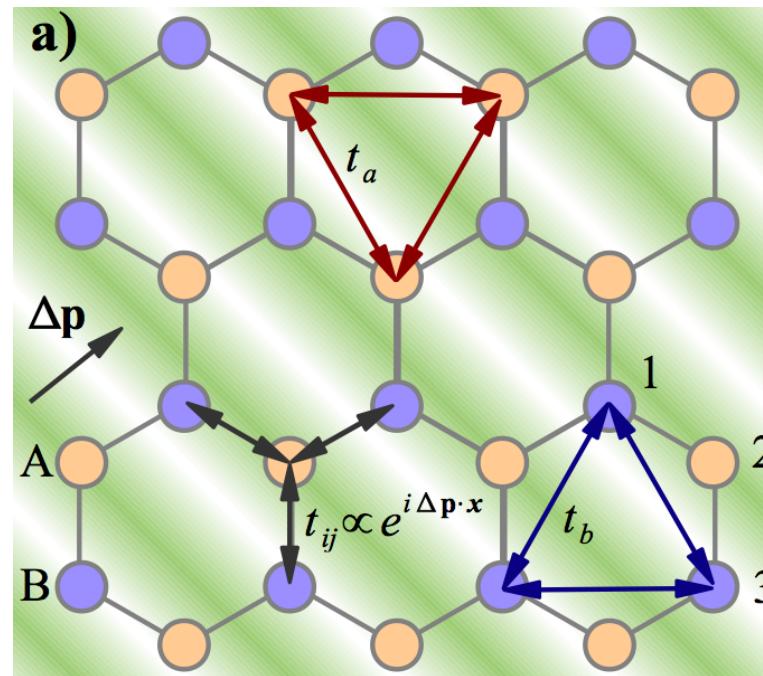


Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- If NNN tunneling between the same sublattices

$(t_a$ and $t_b)$



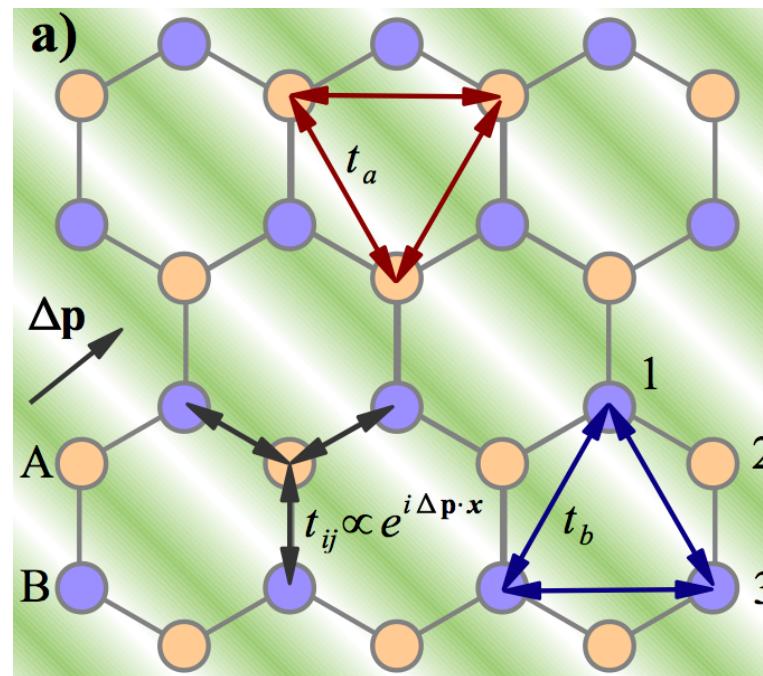
- → Non-vanishing phase for the atoms moving over (triangular) sub-plaquettes

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- If NNN tunneling between the same sublattices

$(t_a$ and $t_b)$



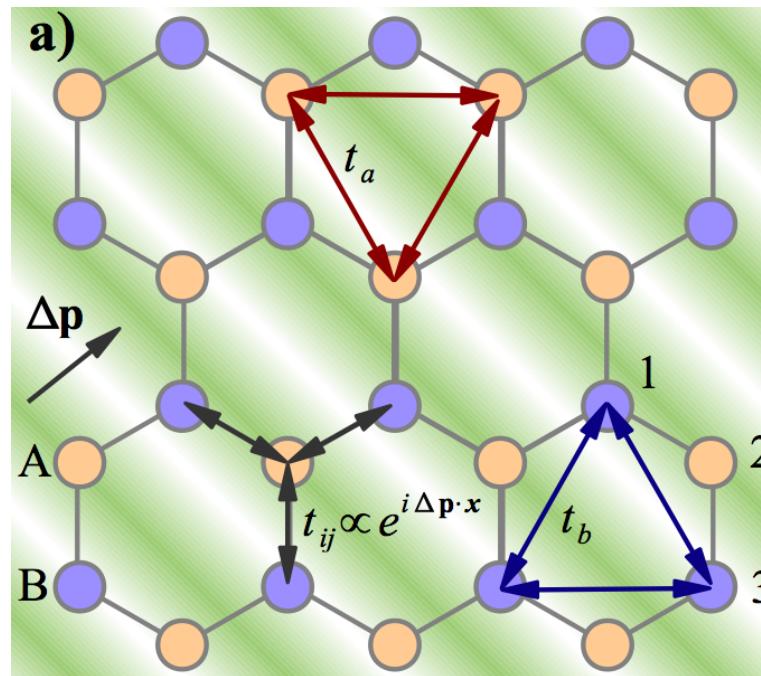
- → Non-vanishing phase for the atoms moving over sub-plaquettes: → Non-zero Chern number
(Haldane, PRL'1988)

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- If NNN tunneling between the same sublattices

$(t_a$ and $t_b)$



- → Non-vanishing phase for the atoms moving over sub-plaquettes: → Non-zero Chern numbers

Chern numbers can be found from TFM ! (PRL'2011)

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- NNN tunneling between the same sublattices

PRL 107, 235301 (2011)

 Selected for a **Viewpoint** in *Physics*
PHYSICAL REVIEW LETTERS

week ending
2 DECEMBER 2011

Seeing Topological Order in Time-of-Flight Measurements

E. Alba,¹ X. Fernandez-Gonzalvo,¹ J. Mur-Petit,¹ J. K. Pachos,² and J. J. Garcia-Ripoll¹

¹*Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain*

²*School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom*

(Received 27 May 2011; revised manuscript received 31 August 2011; published 28 November 2011)

- → Non-vanishing phase for the atoms moving over a sub-plaquettes: → Non-zero Chern numbers
- Chern numbers can be found from TFM !

Effective magnetic fields without rotation

■ Optical hexagonal lattices

- Laser-assisted tunneling between two triangular sublattices
- NNN tunneling between the same sublattices

PRL 107, 235301 (2011)

 Selected for a **Viewpoint** in *Physics*
PHYSICAL REVIEW LETTERS

week ending
2 DECEMBER 2011

Seeing Topological Order in Time-of-Flight Measurements

E. Alba,¹ X. Fernandez-Gonzalvo,¹ J. Mur-Petit,¹ J. K. Pachos,² and J. J. Garcia-Ripoll¹

¹*Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain*

²*School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom*

(Received 27 May 2011; revised manuscript received 31 August 2011; published 28 November 2011)

- → Non-vanishing phase for the atoms moving over a sub-plaquettes: → Non-zero Chern numbers
- Chern numbers can be found from TFM!
- (momentum-dependence of atomic “spin” in TFM)

Viewpoint

A Viewpoint on: Seeing Topological Order in Time-of-Flight Measurements

E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll
Phys. Rev. Lett. **107**, 235301 (2011) – Published November 28, 2011

Seeing Topological Order

Gediminas Juzeliūnas

Gediminas Juzeliūnas is a principal researcher and a deputy director at the Institute of Theoretical Physics and Astronomy of Vilnius University, Lithuania. He is also professor of physics at Lithuanian University of Educational Sciences in Vilnius. Dr. Juzeliūnas completed his Ph.D. in 1986 in theoretical condensed matter physics at Vilnius University, studying optical properties of excitons in confined geometries. Subsequently he held a two-year postdoctoral appointment at the University of East Anglia, England, shifting his research area towards quantum optics. Dr. Juzeliūnas was a Humboldt Research Fellow at the University of Ulm, Germany (1997–1998), and a Fulbright Scholar at the University of Oregon in the US (2000–2001). Dr. Juzeliūnas received a National State Prize for Science of Lithuania in 2008 and a Vilnius University Rector's award in 2010. His current research focuses on ultracold atomic gases, slow light, metamaterials, and graphene. This includes a pioneering theoretical work on light-induced gauge potential for ultracold atoms.

Ian Spielman

Ian Spielman is an experimentalist who received his Ph.D. in physics from the California Institute of Technology in 2004, studying quantum Hall bilayers. From there he moved to NIST in Gaithersburg, Maryland, for a two year NRC postdoc in the Laser Cooling and Trapping group, studying the physics of the superfluid-to-insulator transition in 2D atomic Bose gases. In 2006, he assumed his current position as a NIST physicist and a fellow of the newly founded Joint Quantum Institute (JQI). His research interests focus on using ultracold atomic systems to realize Hamiltonians familiar in condensed matter physics. This includes the pioneering work on creating artificial gauge fields for neutral atoms using laser atom interactions.

Viewpoint

A Viewpoint on:
Seeing Topological Order in Time-of-Flight MeasurementsE. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll
Phys. Rev. Lett. **107**, 235301 (2011) – Published November 28, 2011

Seeing Topological Order

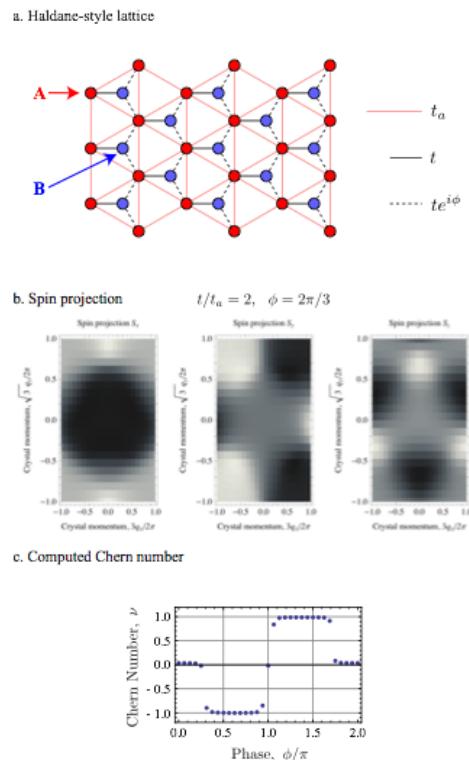
Calculations by
Ian Spielman:(numerical
“experiment”)

FIG. 1. Model System. a. Geometry of a Haldane-style lattice with two interpenetrating triangular lattices. Laser induced complex valued hopping $t \exp(i\phi)$ (dashed links) allow non-zero Chern numbers. b. Predicted projection of spin along \mathbf{e}_x , \mathbf{e}_y , and \mathbf{e}_z , as could be measured using conventional time-of-flight imaging with ultracold atomic systems. c. Chern number as a function of ϕ computed from 40×40 images such as in b.

Effective magnetic fields without rotation -- using Geometric Potentials

- Distinctive features:
 - No rotation is necessary
 - No lattice is needed
 - Yet a lattice can be an important ingredient in creating B_{eff} using geometric potentials →
Optical flux lattices

Geometric potentials

- Emerge in various areas of physics (molecular, condensed matter physics etc.)
- First considered by Mead, Berry, Wilczek and Zee and others in the 80's (initially in the context of molecular physics).
- More recently – in the context of motion of cold atoms affected by laser fields
(Currently: a lot of activities)
- See, e.g.: J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg, Rev. Mod. Phys. **83**, 1523 (2011).
- Advantage of such atomic systems: possibilities to control and shape gauge potentials by choosing proper laser fields.

Creation of B_{eff} using geometric potentials

Atomic dynamics taking into account both **internal degrees of freedom** and also **center of mass** motion.

- The full atomic Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2M} + \hat{V}(\mathbf{r}) + \hat{H}_0(\mathbf{r}, t).$$

Creation of B_{eff} using geometric potentials

Atomic dynamics taking into account both **internal degrees of freedom** and also **center of mass** motion.

- The full atomic Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2M} + \hat{V}(\mathbf{r}) + \hat{H}_0(\mathbf{r}, t).$$

- $\hat{H}_0(\mathbf{r}, t)$ — the Hamiltonian for the electronic (**fast**) degrees of freedom, \leftarrow **(includes \mathbf{r} -dependent atom-light coupling)**
- $\hat{p}^2/2M + \hat{V}(\mathbf{r})$ — the Hamiltonian for center of mass (**slow**) degrees of freedom.
- $\hat{V}(\mathbf{r})$ — the external trapping potential. (for c.m. motion)
- $\hat{H}_0(\mathbf{r}, t)$ has eigenfunctions $|\chi_n(\mathbf{r}, t)\rangle$ with eigenvalues $\varepsilon_n(\mathbf{r}, t)$.

Creation of B_{eff} using geometric potentials

Atomic dynamics taking into account both **internal degrees of freedom** and also **center of mass** motion.

- The full atomic Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2M} + \hat{V}(\mathbf{r}) + \hat{H}_0(\mathbf{r}, t).$$

- $\hat{H}_0(\mathbf{r}, t)$ — the Hamiltonian for the electronic (**fast**) degrees of freedom, \leftarrow **(includes \mathbf{r} -dependent atom-light coupling)**
- $\hat{p}^2/2M + \hat{V}(\mathbf{r})$ — the Hamiltonian for center of mass (**slow**) degrees of freedom.
- $\hat{V}(\mathbf{r})$ — the external trapping potential. (for c.m. motion)
- $\hat{H}_0(\mathbf{r}, t)$ has eigenfunctions $|\chi_n(\mathbf{r}, t)\rangle$ with eigenvalues $\varepsilon_n(\mathbf{r}, t)$.
 \nwarrow (\mathbf{r} -dependent “dressed” eigenstates)

Creation of B_{eff} using geometric potentials

Atomic dynamics taking into account both **internal degrees of freedom** and also **center of mass** motion.

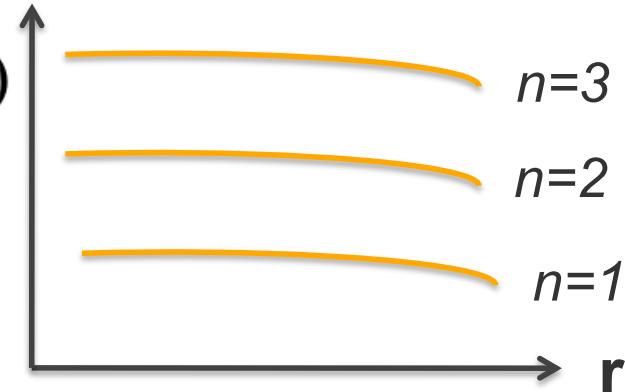
- The full atomic Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2M} + \hat{V}(\mathbf{r}) + \hat{H}_0(\mathbf{r}, t).$$

- $\hat{H}_0(\mathbf{r}, t)$ — the Hamiltonian for the electronic (**fast**) degrees of freedom, \leftarrow **(includes \mathbf{r} -dependent atom-light coupling)**
- $\hat{p}^2/2M + \hat{V}(\mathbf{r})$ — the Hamiltonian for center of mass (**slow**) degrees of freedom.
- $\hat{V}(\mathbf{r})$ — the external trapping potential. (for c.m. motion)
- $\hat{H}_0(\mathbf{r}, t)$ has eigenfunctions $|\chi_n(\mathbf{r}, t)\rangle$ with eigenvalues $\varepsilon_n(\mathbf{r}, t)$.
- Full atomic wave function \leftarrow (\mathbf{r} -dependent “dressed” eigenstates)

$$|\Phi\rangle = \sum_n \Psi_n(\mathbf{r}, t) |\chi_n(\mathbf{r}, t)\rangle.$$

- Adiabatic atomic energies $\varepsilon_n(\mathbf{r})$



- Full state vector:

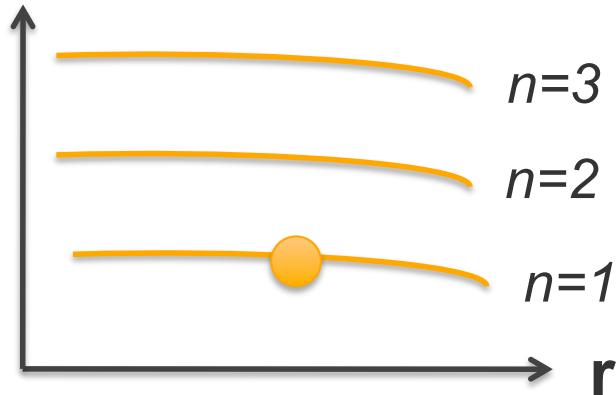
$$|\Phi\rangle = \sum_{n=1}^N |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$

$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion
in the n -th atomic internal “dressed” state $|\chi_n(\mathbf{r})\rangle$

Non-degenerate state with $n=1$

- Adiabatic atomic energies $\varepsilon_n(\mathbf{r})$
- Full state vector:

$$|\Phi\rangle = \sum_{n=1}^N |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$

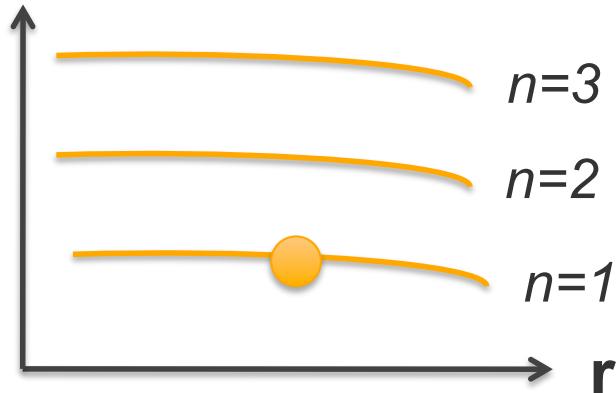


$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion
in the n -th atomic internal “dressed” state $|\chi_n(\mathbf{r})\rangle$

Non-degenerate state with $n=1$

- Adiabatic atomic energies $\varepsilon_n(\mathbf{r})$
- Full state vector:

$$|\Phi\rangle = \sum_{n=1}^N |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$



$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion
in the n -th atomic internal “dressed” state $|\chi_n(\mathbf{r})\rangle$

- Adiabatic approximation

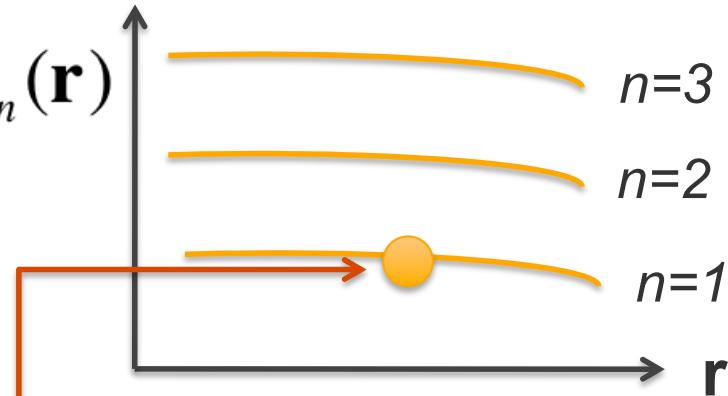
$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

(only the atomic internal state with $n=1$ is included)

Non-degenerate state with $n=1$

- Adiabatic atomic energies $\varepsilon_n(\mathbf{r})$
- Full state vector:

$$|\Phi\rangle = \sum_{n=1}^N |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$



$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion
in the n -th atomic internal “dressed” state $|\chi_n(\mathbf{r})\rangle$

- Adiabatic approximation

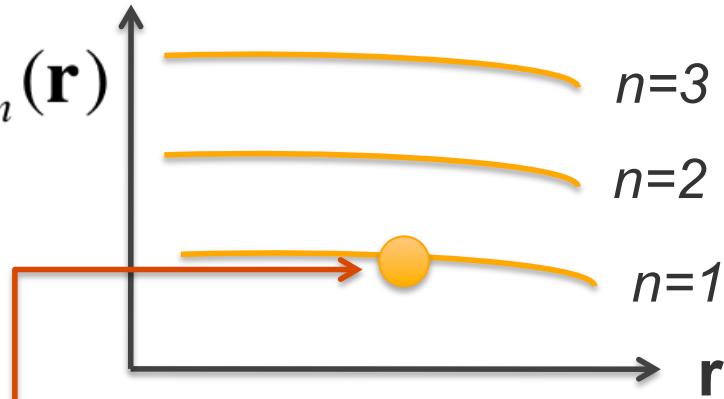
$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

(only the atomic internal state with $n=1$ is included)

Non-degenerate state with $n=1$

- Adiabatic atomic energies $\varepsilon_n(\mathbf{r})$
- Full state vector:

$$|\Phi\rangle = \sum_{n=1}^N |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$



$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion
in the n -th atomic internal “dressed” state $|\chi_n(\mathbf{r})\rangle$

- Adiabatic approximation

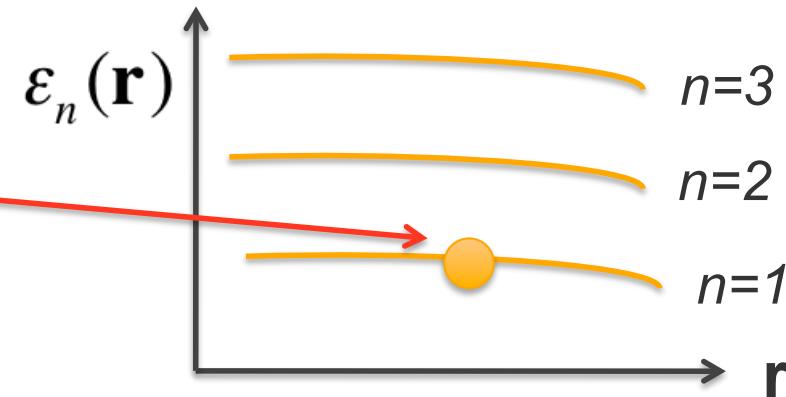
$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

- What is the equation of motion for $\Psi_1(\mathbf{r}, t)$?

Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$



Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

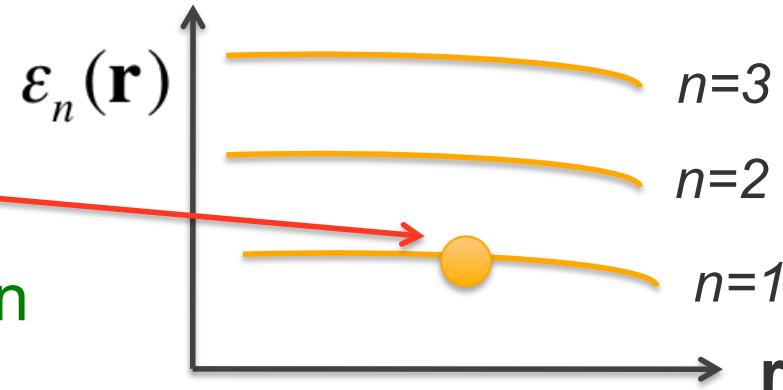
Equation of the atomic motion
in the internal state $|\chi_1(\mathbf{r})\rangle$

$$i\hbar \partial_t \Psi_1(\mathbf{r}, t) = H \Psi_1(\mathbf{r}, t)$$

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A}_{11})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \mathbf{p} = -i\hbar \nabla$$

$$\mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears



Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

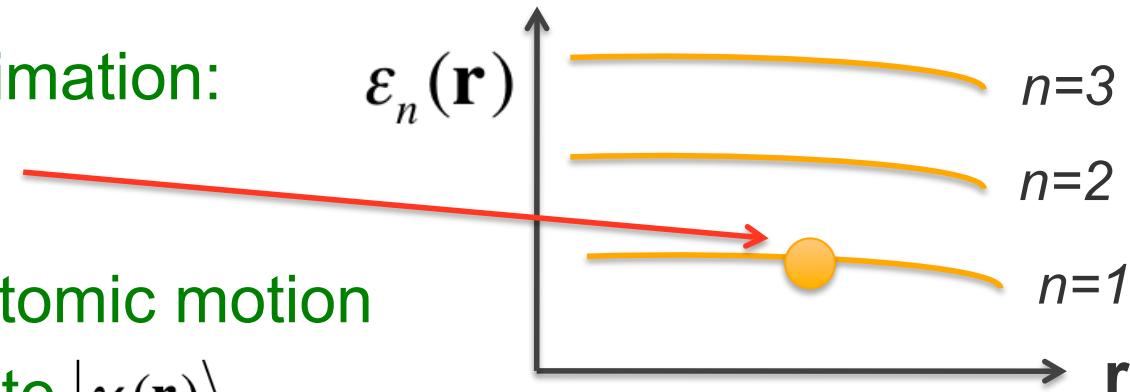
Equation of the atomic motion
in the internal state $|\chi_1(\mathbf{r})\rangle$

$$i\hbar \partial_t \Psi_1(\mathbf{r}, t) = H \Psi_1(\mathbf{r}, t)$$

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A}_{11})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \mathbf{p} = -i\hbar \nabla$$

$$\mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears (due to the position-dependence of the **atomic internal “dressed” state** $|\chi_1(\mathbf{r})\rangle$)



Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

Equation of the atomic motion
in the internal state $|\chi_1(\mathbf{r})\rangle$

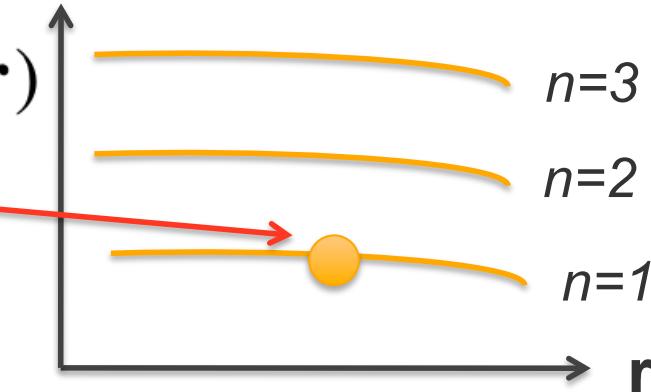
$$i\hbar \partial_t \Psi_1(\mathbf{r}, t) = H \Psi_1(\mathbf{r}, t)$$

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A}_{11})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \mathbf{p} = -i\hbar \nabla$$

$$\mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears

$\mathbf{B} = \nabla \times \mathbf{A}$ - effective magnetic field



Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

Equation of the atomic motion
in the internal state $|\chi_1(\mathbf{r})\rangle$

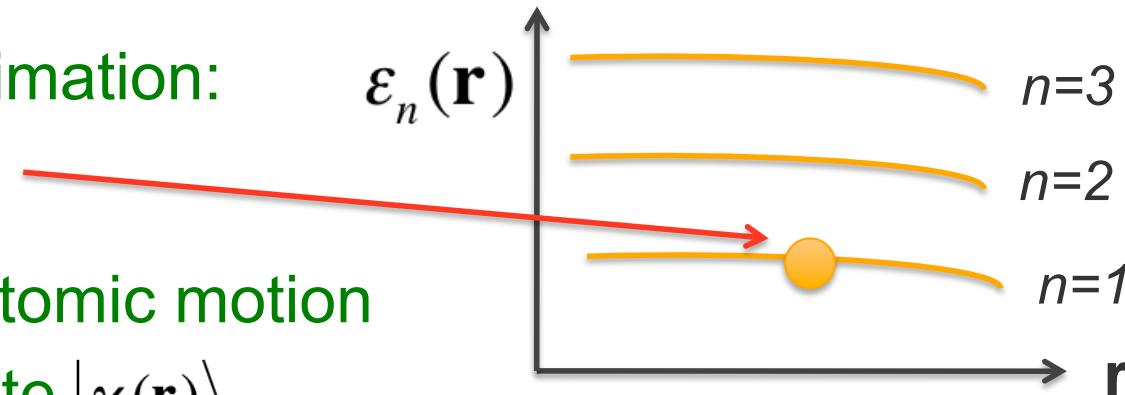
$$i\hbar \partial_t \Psi_1(\mathbf{r}, t) = H \Psi_1(\mathbf{r}, t)$$

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A}_{11})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \mathbf{p} = -i\hbar \nabla$$

$$\mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears

$\mathbf{B} = \nabla \times \mathbf{A}$ - effective magnetic field (non-trivial situation if $\mathbf{B} \neq 0$)



To summarise

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears (due to the position-dependence of the **atomic internal “dressed” state** $|\chi(\mathbf{r})\rangle$)

$$\mathbf{A} \equiv \mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

$\mathbf{B} = \nabla \times \mathbf{A}$ - effective magnetic field (non-trivial situation if $\mathbf{B} \neq 0$)

Large possibilities to **control and shape** the effective magnetic field \mathbf{B} by changing the light beams

Light induced effective magnetic field
can be due to

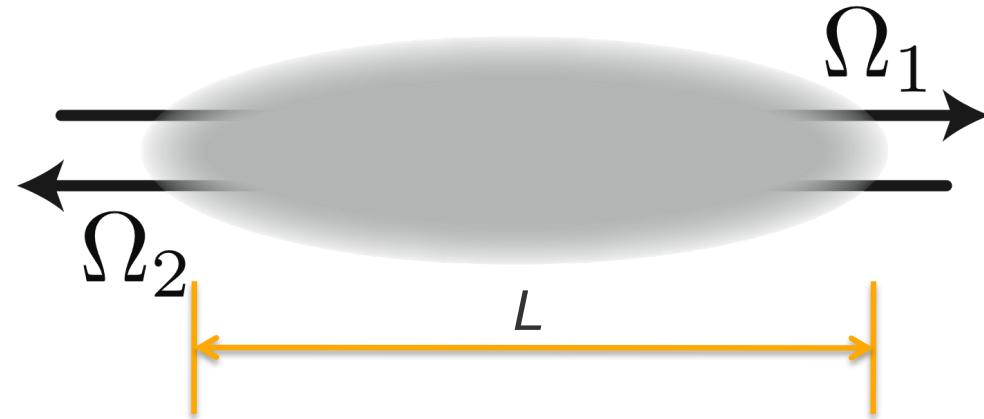
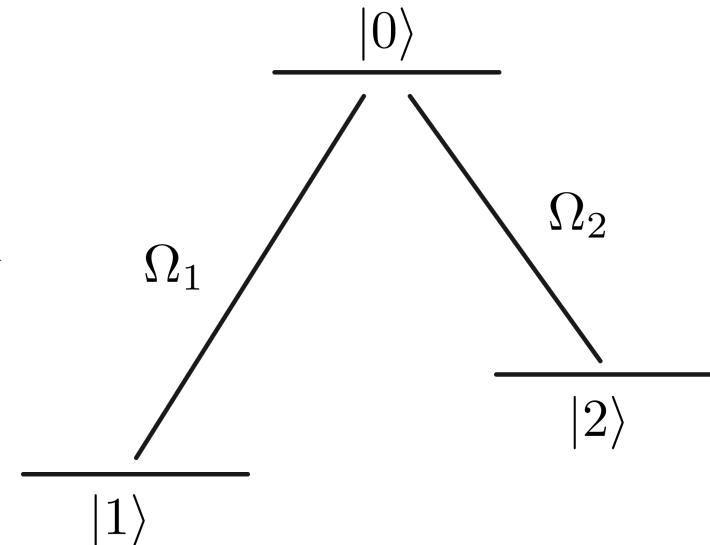
1. ***Spatial dependence*** of laser amplitudes
2. ***Spatial dependence*** of atom-light detuning
3. ***Spatial dependence*** of **both** the laser
amplitudes and also atom-light detuning
(e.g. **optical flux lattices**)

Light induced effective magnetic field
can be due to

1. ***Spatial dependence*** of laser amplitudes

Counter-propagating beams with spatially shifted profiles

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A 73, 025602 (2006).]

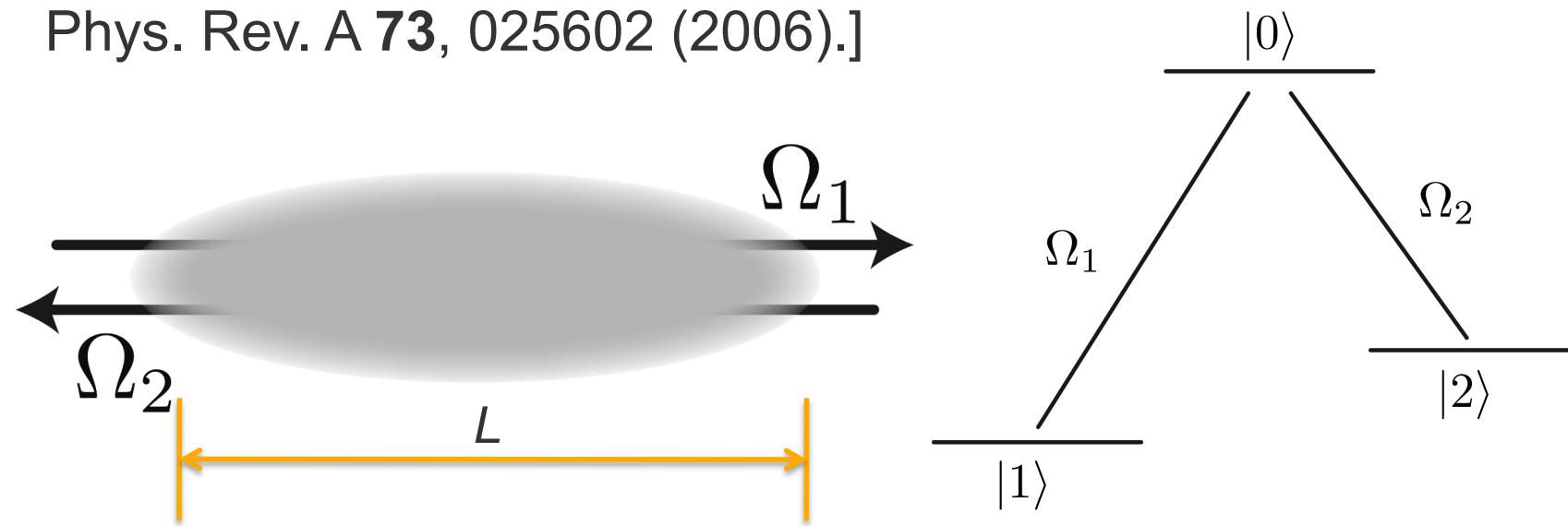


$$\mathbf{B} = \nabla \times \mathbf{A} \neq 0$$

Artificial Lorentz force

Counter-propagating beams with spatially shifted profiles

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A 73, 025602 (2006).]

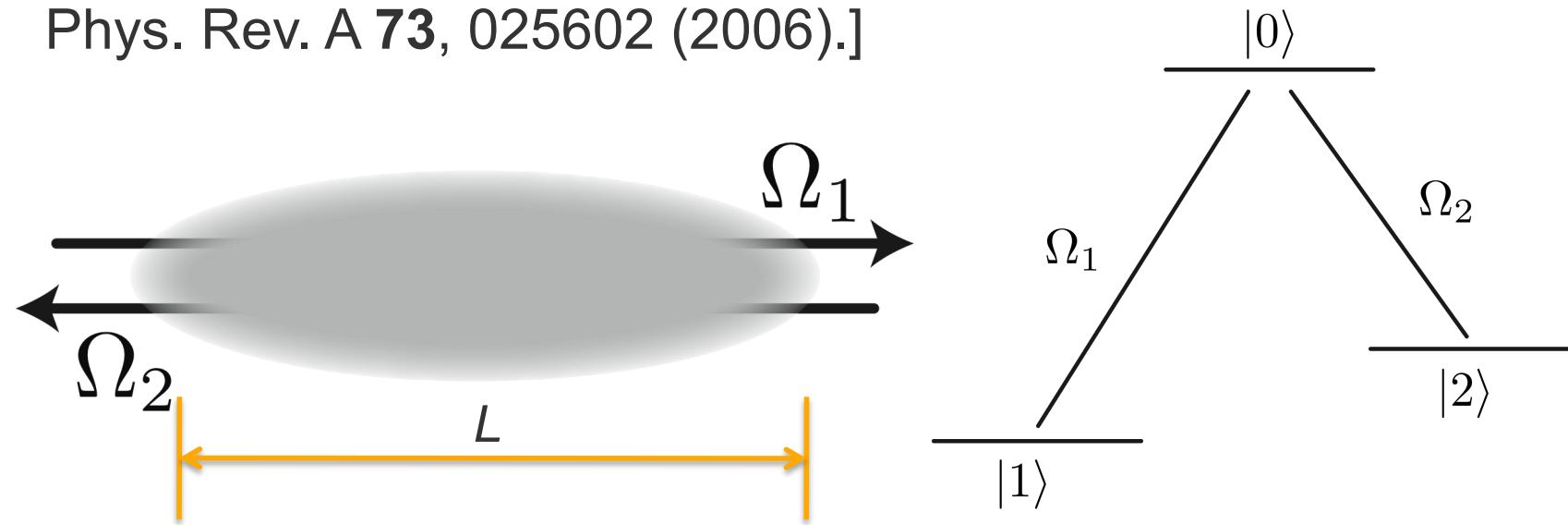


$$\mathbf{B} = \nabla \times \mathbf{A} \neq 0$$

Artificial Lorentz force (due to **photon recoil**)

Counter-propagating beams with spatially shifted profiles

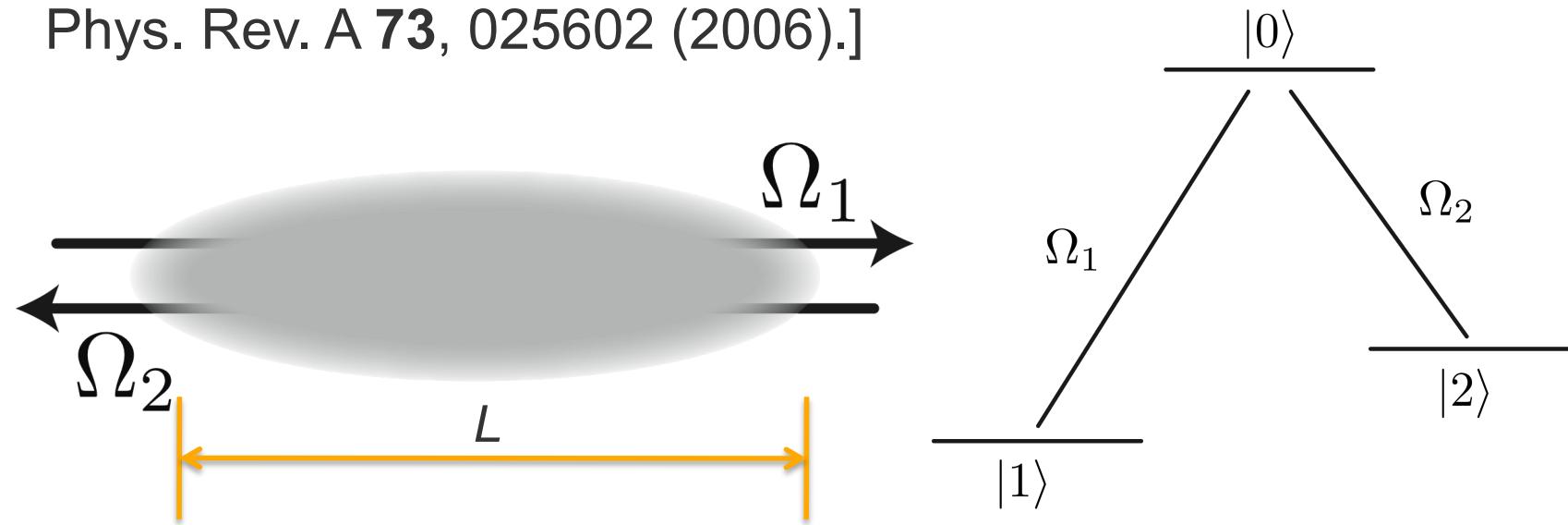
[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A **73**, 025602 (2006).]



Total magnetic flux is proportional to the **sample length** L : $\Phi \approx kL$
(one can not increase the total flux in the transverse direction)

Counter-propagating beams with spatially shifted profiles

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A 73, 025602 (2006).]



Total magnetic flux is proportional to the **sample length** L : $\Phi \approx kL$

(one can not increase the total flux in the transverse direction)

No translational symmetry for shifted beams (in the transverse direction):

→ No lattice

Light induced effective magnetic field
due to

- ~~***Spatial dependence* of laser amplitudes**~~
- ***Spatial dependence* of atom-light detuning**

Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential

Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman*

*Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,
Gaithersburg, Maryland, 20899, USA*

(Received 17 September 2008; published 30 March 2009)

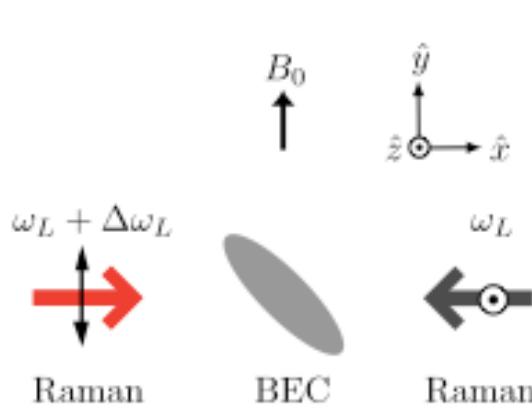
Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential

Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman*

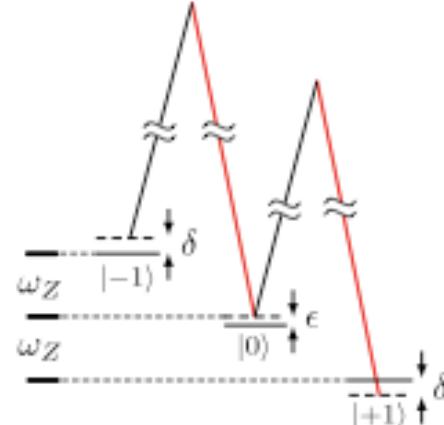
Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,
Gaithersburg, Maryland, 20899, USA

(Received 17 September 2008; published 30 March 2009)

(a) Experimental layout



(b) Level diagram



nature

Vol 462 | 3 December 2009 | doi:10.1038/nature08609

LETTERS

Synthetic magnetic fields for ultracold neutral atoms

Y.-J. Lin¹, R. L. Compton¹, K. Jiménez-García^{1,2}, J. V. Porto¹ & I. B. Spielman¹

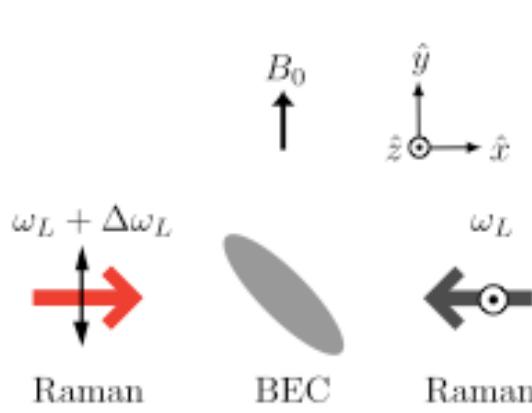
Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential

Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman*

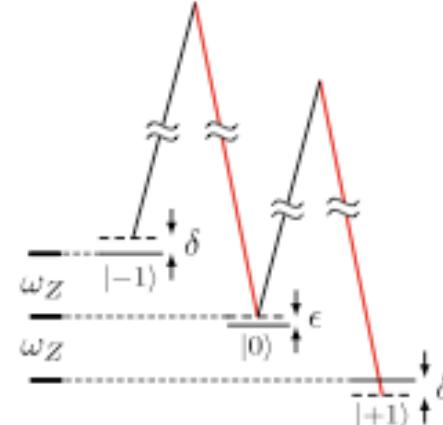
Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,
Gaithersburg, Maryland, 20899, USA

(Received 17 September 2008; published 30 March 2009)

(a) Experimental layout



(b) Level diagram



nature

Vol 462 | 3 December 2009 | doi:10.1038/nature08609

LETTERS

Position-dependent detuning δ

Synthetic magnetic fields for ultracold neutral atoms

Y.-J. Lin¹, R. L. Compton¹, K. Jiménez-García^{1,2}, J. V. Porto¹ & I. B. Spielman¹

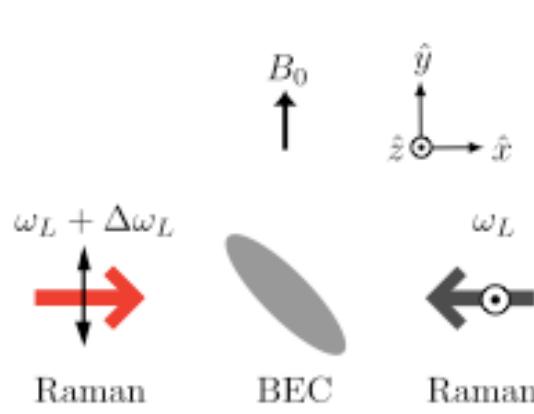
Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential

Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman*

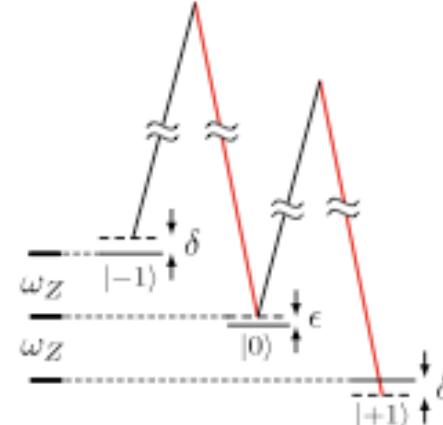
*Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,
 Gaithersburg, Maryland, 20899, USA*

(Received 17 September 2008; published 30 March 2009)

(a) Experimental layout



(b) Level diagram



nature

Vol 462 | 3 December 2009 | doi:10.1038/nature08609

LETTERS

Position-dependent detuning $\delta = \delta(y) \rightarrow B \neq 0$

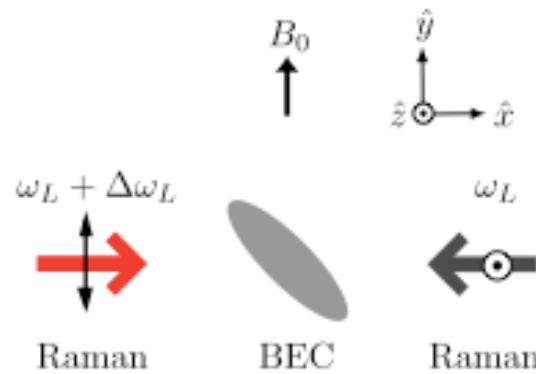
— **Synthetic magnetic fields for ultracold neutral atoms** —

Y.-J. Lin¹, R. L. Compton¹, K. Jiménez-García^{1,2}, J. V. Porto¹ & I. B. Spielman¹

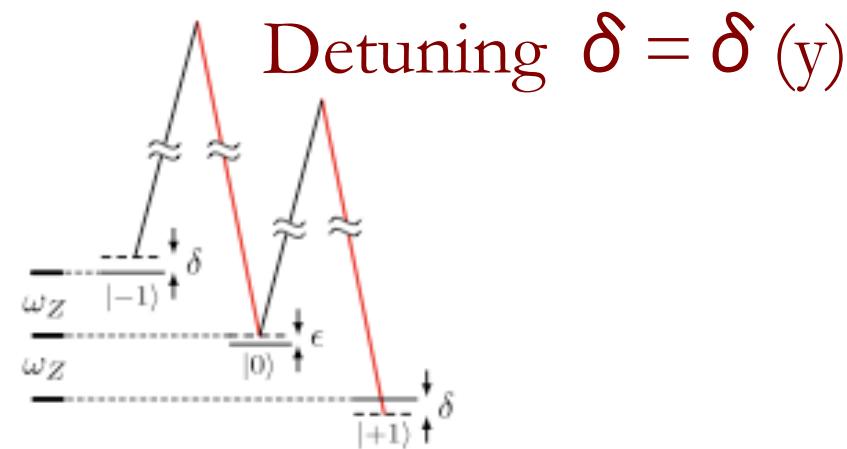
Light induced effective magnetic field due to

■ ***Spatial dependence*** of atom-light detuning

(a) Experimental layout



(b) Level diagram



Magnetic **flux** is again determined by the sample length (**rather than the area**)!

→ One can not create large magnetic flux

Light induced effective magnetic field
can be due to

1. ~~**Spatial dependence** of laser amplitudes~~
2. ~~**Spatial dependence** of atom-light detuning~~
3. **Spatial dependence** of **both** the laser amplitudes and also atom-light detuning

Effective gauge potentials – due to position-dependence of both

- A) Detuning *and*
B) Laser amplitudes
e.g. **Optical flux lattices**
- N. R. Cooper, Phys. Rev. Lett. **106**, 175301 (2011)

Effective gauge potentials – due to position-dependence of both

- A) Detuning *and*
B) Laser amplitudes
- e.g. **Optical flux lattices**
- N. R. Cooper, Phys. Rev. Lett. **106**, 175301 (2011)

Magnetic **flux** is determined by the area (!!) of atomic cloud

Effective gauge potentials – due to position-dependence of both

- A) Detuning *and*
- B) Laser amplitudes

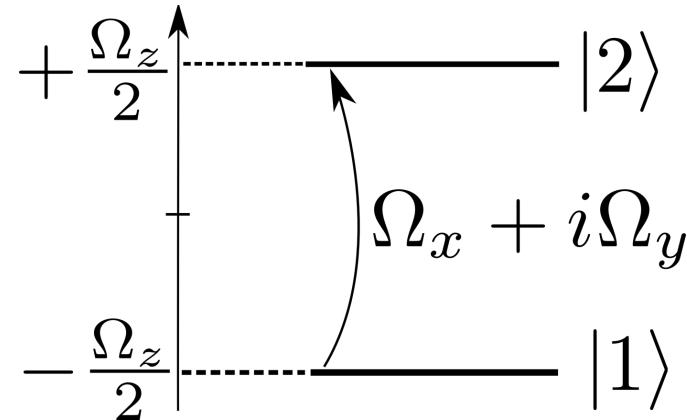
e.g. **Optical flux lattices**

- N. R. Cooper, Phys. Rev. Lett. **106**, 175301 (2011)

Magnetic **flux** is determined by the area (!!) of atomic cloud

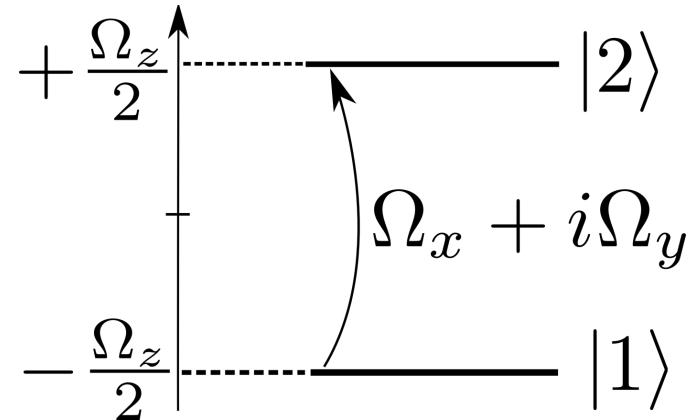
- Related earlier work:
- A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu, Phys. Rev. Lett. **92**, 153005 (2004).

Two atomic internal states



- Position-dependent detuning $\Delta(\mathbf{r}) \equiv \Omega_z$
- Position-dependence of the Rabi frequencies of atom-light coupling $\Omega_{\pm}(\mathbf{r}) \equiv \Omega_x \pm i\Omega_y$

Two atomic internal states

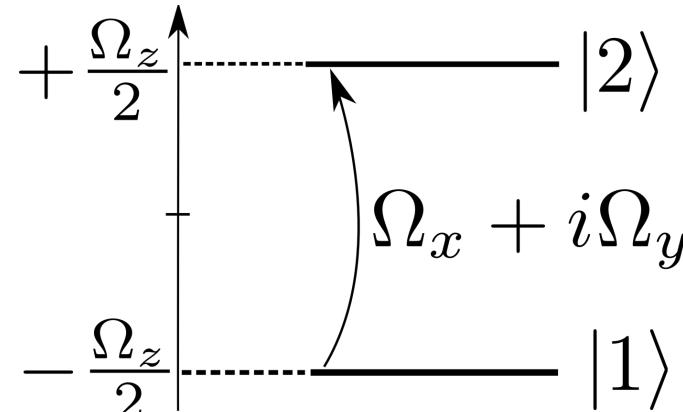


- Position-dependent detuning $\Delta(\mathbf{r}) \equiv \Omega_z$
- Position-dependence of the Rabi frequencies of atom-light coupling $\Omega_{\pm}(\mathbf{r}) \equiv \Omega_x \pm i\Omega_y$
- **Atom-light Hamiltonian:**

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x + i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

(2×2 matrix)

Two atomic internal states



- Position-dependent detuning $\Delta(\mathbf{r}) \equiv \Omega_z$
- Position-dependence of the Rabi frequencies of atom-light coupling $\Omega_{\pm}(\mathbf{r}) \equiv \Omega_x \pm i\Omega_y$
- **Atom-light Hamiltonian:**

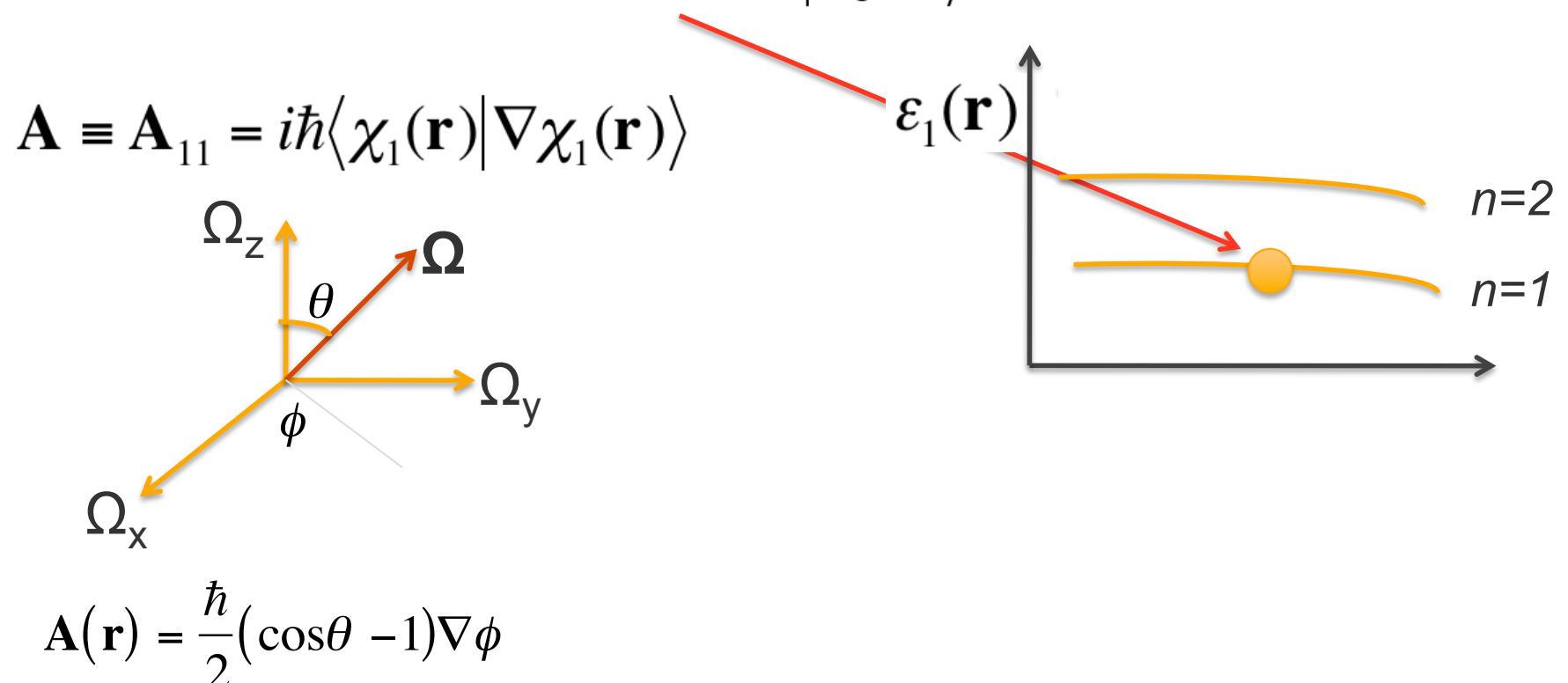
$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x + i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$\Omega_x \neq 0, \Omega_y \neq 0, \rightarrow \underline{\text{Coupling}}$ between the atomic states \rightarrow

$\hat{H}_0(\mathbf{r})$ has position-dependent eigenstates $|\chi_j(\mathbf{r})\rangle, j=1,2$

$$\hat{H}_0(\mathbf{r})|\chi_j(\mathbf{r})\rangle = \varepsilon_j(\mathbf{r})|\chi_j(\mathbf{r})\rangle \quad (j=1,2), \quad \hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x + i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

- Effective vector potential for atomic motion in the lower dressed state $|\chi_1(\mathbf{r})\rangle$:



See, e.g.: J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg.
Rev. Mod. Phys. **83**, 1523 (2011).

→ Optical flux lattices

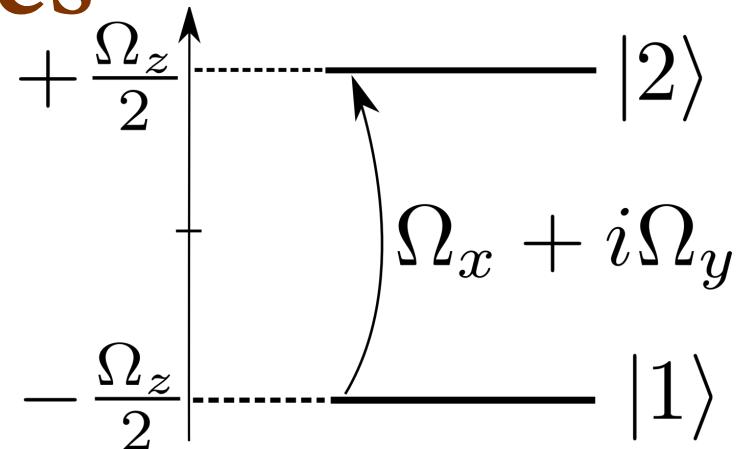
Two-level system:

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x - i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$$\Omega_x = \Omega_{\perp} \cos(x\pi/a) \quad \Omega_y = \Omega_{\perp} \cos(y\pi/a)$$

$$\Omega_z = \Omega_{\perp} \sin(x\pi/a) \sin(y\pi/a)$$

Periodic coupling $\Omega_x + i\Omega_y$ and periodic detuning Ω_z



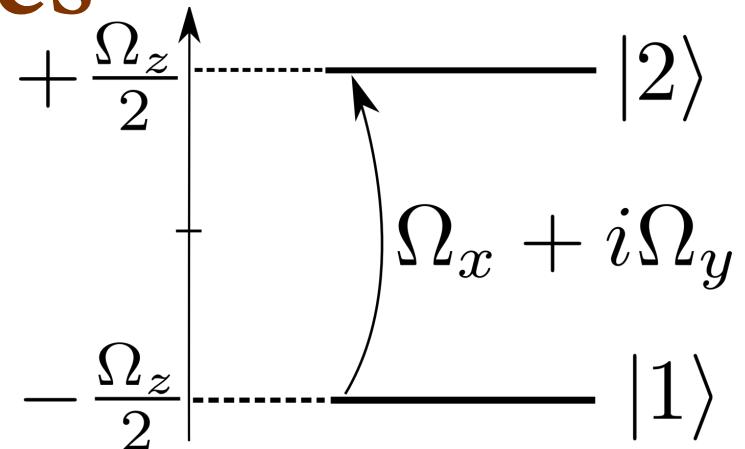
→ Optical flux lattices

Two-level system:

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x - i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$$\Omega_x = \Omega_{\perp} \cos(x\pi/a) \quad \Omega_y = \Omega_{\perp} \cos(y\pi/a)$$

$$\Omega_z = \Omega_{\perp} \sin(x\pi/a) \sin(y\pi/a)$$



Periodic coupling $\Omega_x + i\Omega_y$ and periodic detuning Ω_z

→ Periodic vector potential $\mathbf{A} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_l(\mathbf{r}) \rangle$ with $\mathbf{B} = \nabla \times \mathbf{A} \neq 0$

→ Optical flux lattices

Two-level system:

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x - i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$$\Omega_x = \Omega_{\perp} \cos(x\pi/a) \quad \Omega_y = \Omega_{\perp} \cos(y\pi/a)$$

$$\Omega_z = \Omega_{\perp} \sin(x\pi/a) \sin(y\pi/a)$$



Periodic coupling $\Omega_x + i\Omega_y$ and periodic detuning Ω_z

→ Periodic vector potential $\mathbf{A} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_l(\mathbf{r}) \rangle$ with $\mathbf{B} = \nabla \times \mathbf{A} \neq 0$
(B – non-staggered)!!!

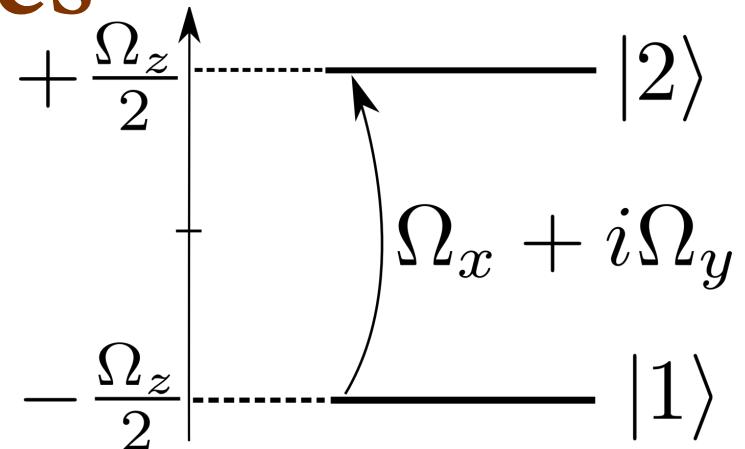
→ Optical flux lattices

Two-level system:

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x - i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$$\Omega_x = \Omega_{\perp} \cos(x\pi/a) \quad \Omega_y = \Omega_{\perp} \cos(y\pi/a)$$

$$\Omega_z = \Omega_{\perp} \sin(x\pi/a) \sin(y\pi/a)$$



Periodic coupling $\Omega_x + i\Omega_y$ and periodic detuning Ω_z

→ Periodic vector potential $\mathbf{A} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_l(\mathbf{r}) \rangle$ with $\mathbf{B} = \nabla \times \mathbf{A} \neq 0$
(B – non-staggered)!!!

→ Periodic trapping potential

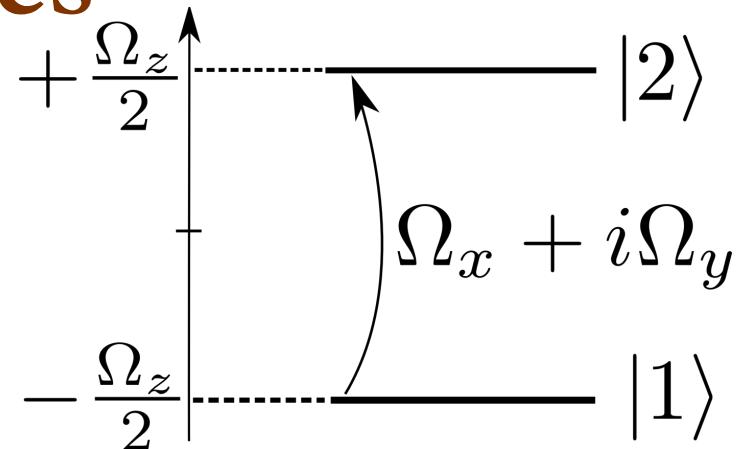
→ Optical flux lattices

Two-level system:

$$\hat{H}_0(\mathbf{r}) = -\hbar \begin{pmatrix} \Omega_z/2 & \Omega_x - i\Omega_y \\ \Omega_x - i\Omega_y & -\Omega_z/2 \end{pmatrix}$$

$$\Omega_x = \Omega_{\perp} \cos(x\pi/a) \quad \Omega_y = \Omega_{\perp} \cos(y\pi/a)$$

$$\Omega_z = \Omega_{\perp} \sin(x\pi/a) \sin(y\pi/a)$$



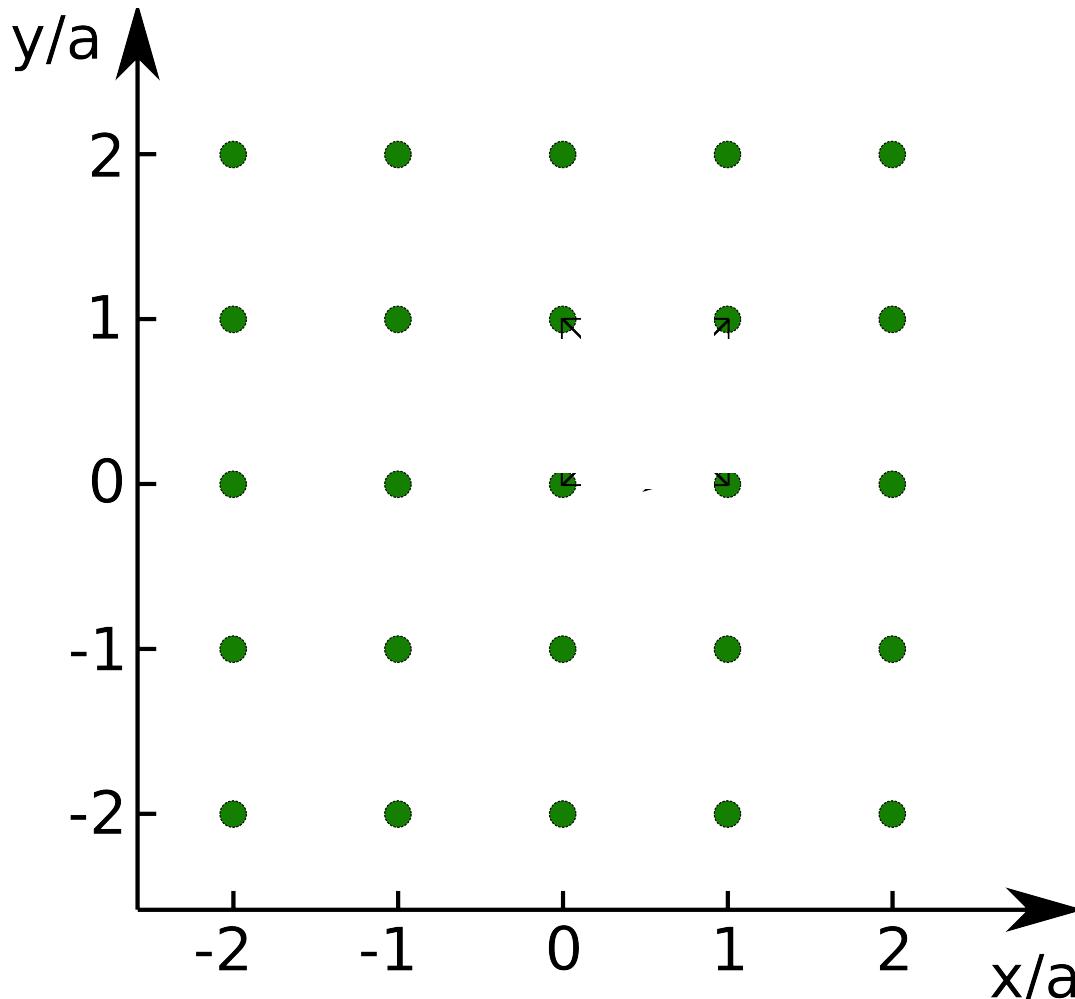
Periodic coupling $\Omega_x + i\Omega_y$ and periodic detuning Ω_z

→ Periodic vector potential $\mathbf{A} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_l(\mathbf{r}) \rangle$ with $\mathbf{B} = \nabla \times \mathbf{A} \neq 0$
(B – non-staggered)!!!

→ Periodic trapping potential

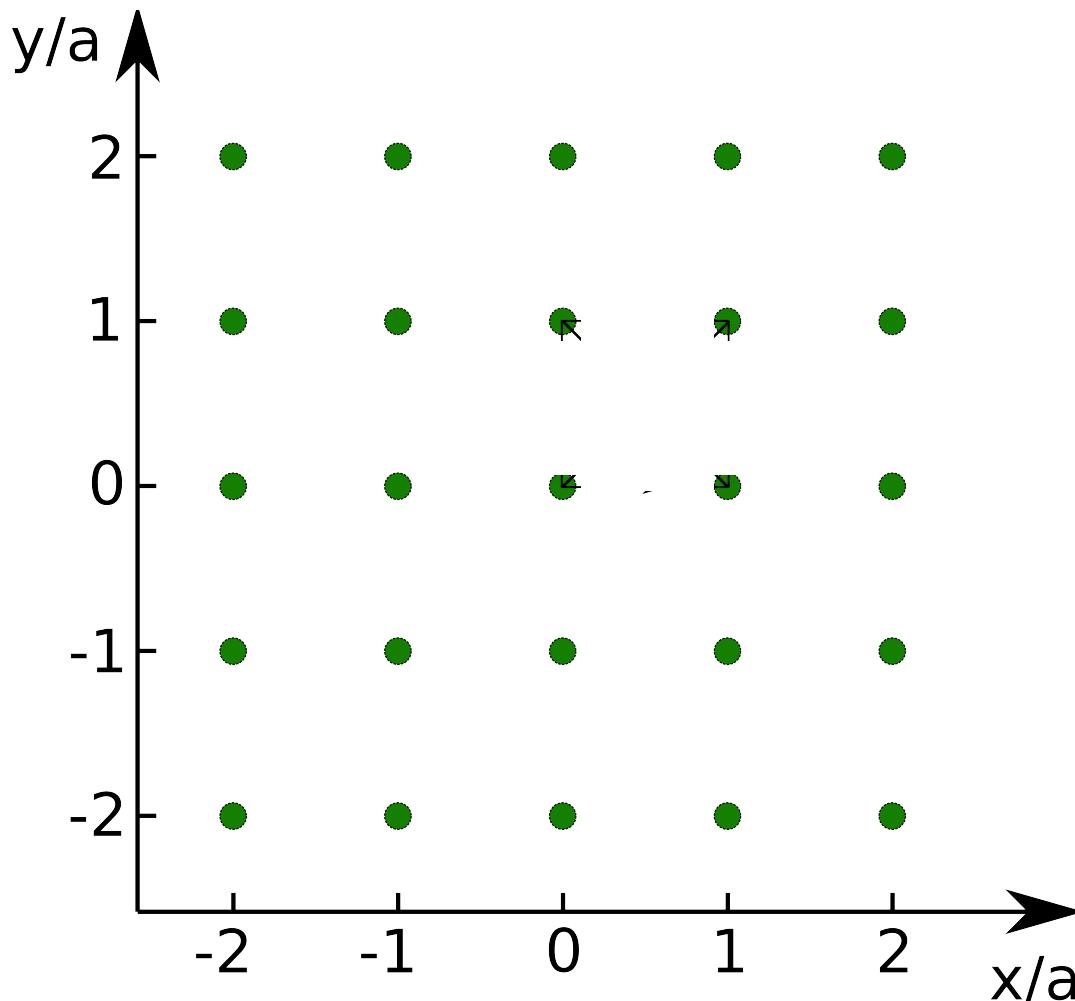
→→ **Optical flux lattice!!!**

→ Optical flux lattices (square)



Non-zero background magnetic flux over an elementary cell

→ Optical flux lattices (square)



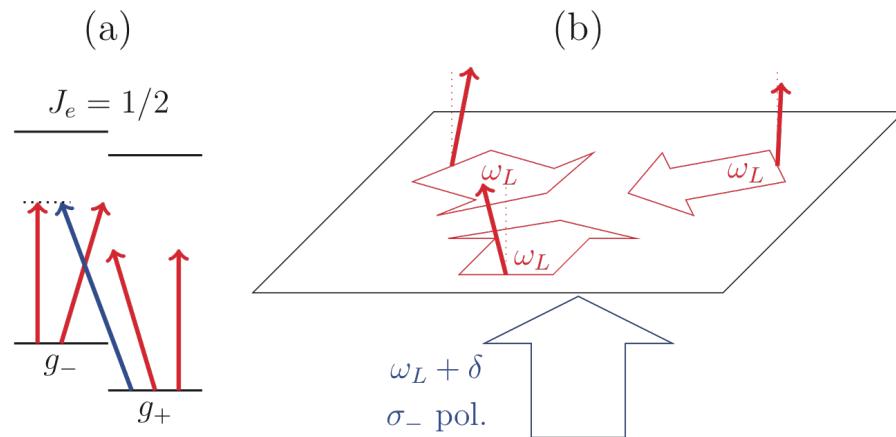
Non-zero background magnetic flux over an elementary cell
Periodic trapping potential (the lattice)

OFL can be produced

- Using Raman transitions between the hyperfine states of alkali atoms (and specially shaped laser fields)

Triangular optical flux lattice

N. R. Cooper and J. Dalibard, EPL, 95 (2011) 66004.



Square optical flux lattice:

G. Juzeliunas and I.B. Spielman, in preparation

Characteristic features of light-induced gauge potentials

- No rotation of atomic gas
- Effective magnetic field can be shaped by choosing proper laser beams
- The magnetic flux can be made proportional to the area using the optical flux lattices

Characteristic features of light-induced gauge potentials

- No rotation of atomic gas
- Effective magnetic field can be shaped by choosing proper laser beams
- The magnetic flux can be made proportional to the area using the optical flux lattices
- **Generation of dynamical gauge fields???**

Characteristic features of light-induced gauge potentials

- No rotation of atomic gas
- Effective magnetic field can be shaped by choosing proper laser beams
- The magnetic flux can be made proportional to the area using the optical flux lattices
- **Generation of dynamical gauge fields???**
- **Extension to the non-Abelian case**

If one degenerate atomic internal
dressed state

-- Abelian gauge potentials

Non-degenerate state with $n=1$

Adiabatic approximation:

$$|\Phi\rangle \approx |\chi_1(\mathbf{r})\rangle \Psi_1(\mathbf{r}, t)$$

Equation of the atomic motion
in the internal state $|\chi_1(\mathbf{r})\rangle$

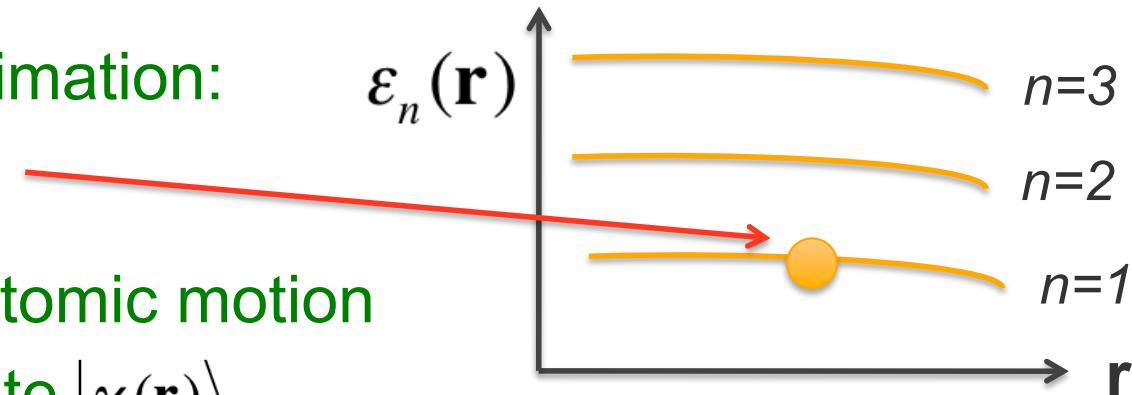
$$i\hbar \partial_t \Psi_1(\mathbf{r}, t) = H \Psi_1(\mathbf{r}, t)$$

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A}_{11})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \mathbf{p} = -i\hbar \nabla$$

$$\mathbf{A}_{11} = i\hbar \langle \chi_1(\mathbf{r}) | \nabla \chi_1(\mathbf{r}) \rangle$$

Effective Vector potential $\mathbf{A}_{11} \equiv \mathbf{A}$ appears

$\mathbf{B} = \nabla \times \mathbf{A}$ - effective magnetic field (non-trivial situation if $\mathbf{B} \neq 0$)

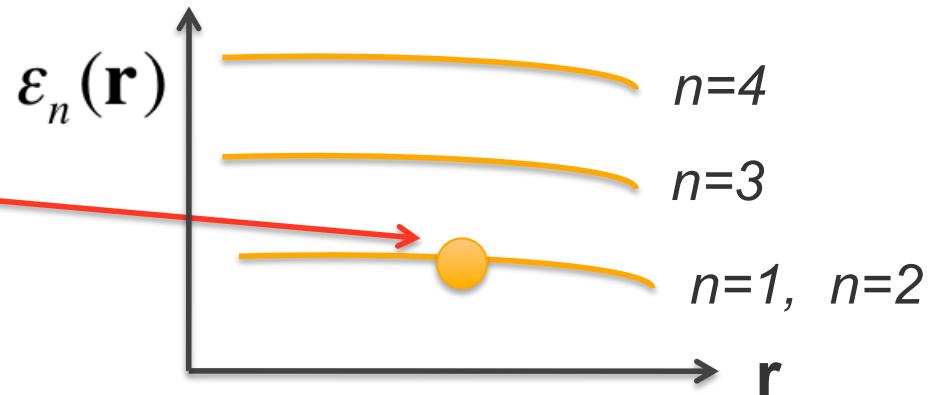


If more than one degenerate
atomic internal dressed state
--Non-Abelian gauge
potentials

Degenerate states with $n=1$ and $n=2$

Adiabatic approximation:

$$|\Phi\rangle \approx \sum_{n=1}^2 |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$

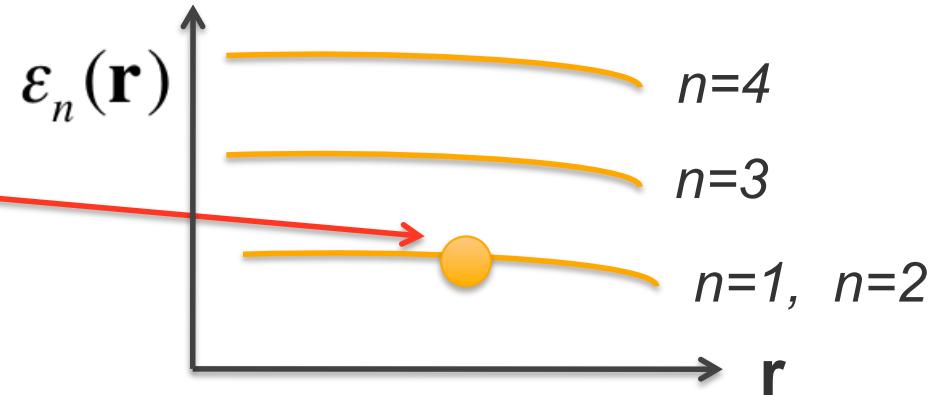


$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion in the n -th atomic internal “dressed” state ($n=1, 2$)

Degenerate states with $n=1$ and $n=2$

Adiabatic approximation:

$$|\Phi\rangle \approx \sum_{n=1}^2 |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$



$\Psi_n(\mathbf{r}, t)$ – wave-function of the atomic centre of mass motion in the n -th atomic internal “dressed” state ($n=1, 2$)

$$\Psi(\mathbf{r}, t) = \begin{pmatrix} \Psi_1(\mathbf{r}, t) \\ \Psi_2(\mathbf{r}, t) \end{pmatrix}$$

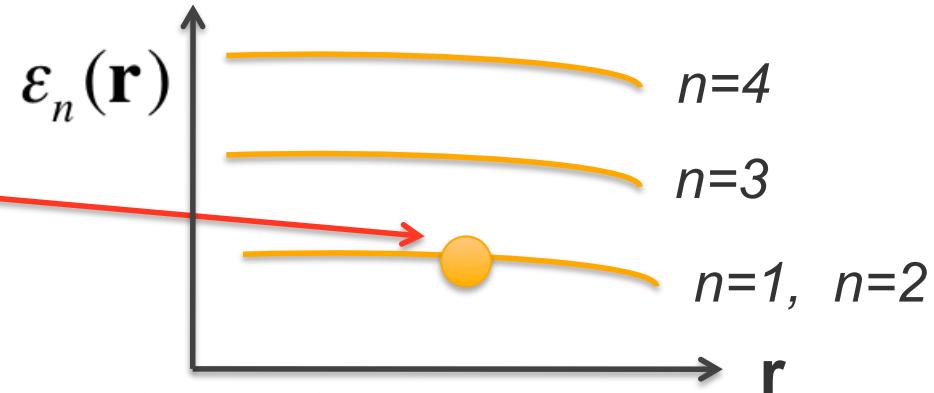
-two-component atomic wave-function
(spinor wave-function)
→ **Quasi-spin 1/2**

Repeating the same procedure ...

Degenerate states with $n=1$ and $n=2$

Adiabatic approximation:

$$|\Phi\rangle \approx \sum_{n=1}^2 |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r},t)$$



Equation of motion:

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r})$$

$$\Psi(\mathbf{r},t) = \begin{pmatrix} \Psi_1(\mathbf{r},t) \\ \Psi_2(\mathbf{r},t) \end{pmatrix}$$

- two-comp. atomic wave-function

$$\mathbf{A}_{lj} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_j(\mathbf{r}) \rangle, \quad (l, j = 1, 2)$$

2x2 matrix

- effective vector potential

$$\mathbf{B} = \nabla \times \mathbf{A} + \frac{1}{i\hbar} \mathbf{A} \times \mathbf{A}$$

2x2 matrix

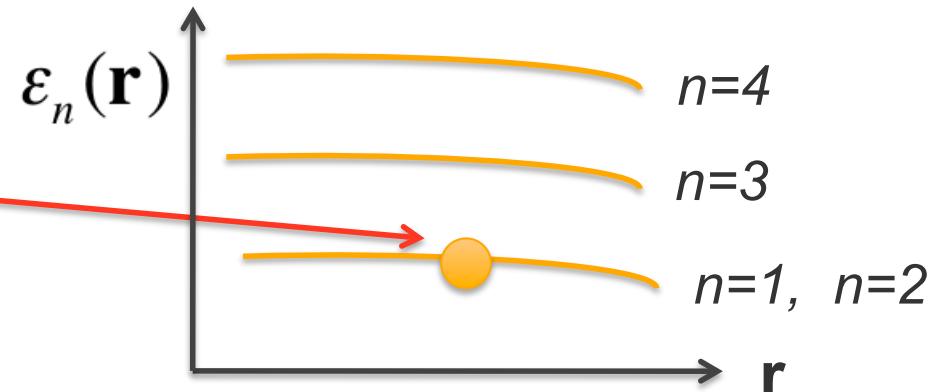
- effective magnetic field (non-trivial situation if $\mathbf{B} \neq 0$)

\mathbf{A} appears due to position-dependence of $|\chi_n(\mathbf{r})\rangle$

Degenerate states with $n=1$ and $n=2$

Adiabatic approximation:

$$|\Phi\rangle \approx \sum_{n=1}^2 |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r},t)$$



Equation of motion:

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r})$$

$$\Psi(\mathbf{r},t) = \begin{pmatrix} \Psi_1(\mathbf{r},t) \\ \Psi_2(\mathbf{r},t) \end{pmatrix}$$

- two-comp. atomic wave-function

$$\mathbf{A}_{lj} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_j(\mathbf{r}) \rangle, \quad (l, j = 1, 2)$$

2x2 matrix

- effective vector potential

$$\mathbf{B} = \nabla \times \mathbf{A} + \frac{1}{i\hbar} \mathbf{A} \times \mathbf{A}$$

2x2 matrix

- effective magnetic field (non-trivial situation if $\mathbf{B} \neq 0$)

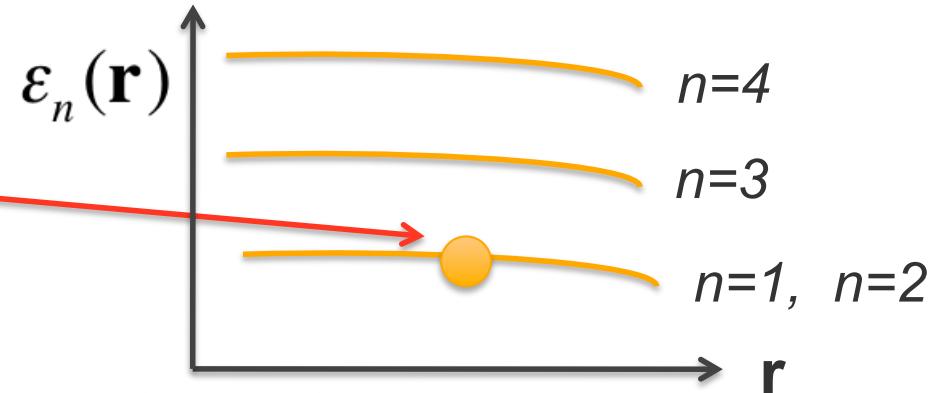
\mathbf{A} appears due to position-dependence of $|\chi_n(\mathbf{r})\rangle$

If A_x, A_y, A_z do not commute, $\mathbf{B} \neq 0$ even if \mathbf{A} is constant !!!

Degenerate states with $n=1$ and $n=2$

Adiabatic approximation:

$$|\Phi\rangle \approx \sum_{n=1}^2 |\chi_n(\mathbf{r})\rangle \Psi_n(\mathbf{r}, t)$$



Equation of motion:

$$\hat{H} = \frac{(\mathbf{p} - \mathbf{A})^2}{2M} + V(\mathbf{r}) + \varepsilon_1(\mathbf{r}) \quad \Psi(\mathbf{r}, t) = \begin{pmatrix} \Psi_1(\mathbf{r}, t) \\ \Psi_2(\mathbf{r}, t) \end{pmatrix}$$

- two-comp. atomic wave-function

$$\mathbf{A}_{lj} = i\hbar \langle \chi_l(\mathbf{r}) | \nabla \chi_j(\mathbf{r}) \rangle, \quad (l, j = 1, 2) \quad \begin{matrix} \text{2x2 matrix} \\ \text{- effective vector potential} \end{matrix}$$

$$\mathbf{B} = \nabla \times \mathbf{A} + \frac{1}{i\hbar} \mathbf{A} \times \mathbf{A} \quad \begin{matrix} \text{2x2 matrix} \\ \text{- effective magnetic field (non-trivial situation if } \mathbf{B} \neq 0 \text{)} \end{matrix}$$

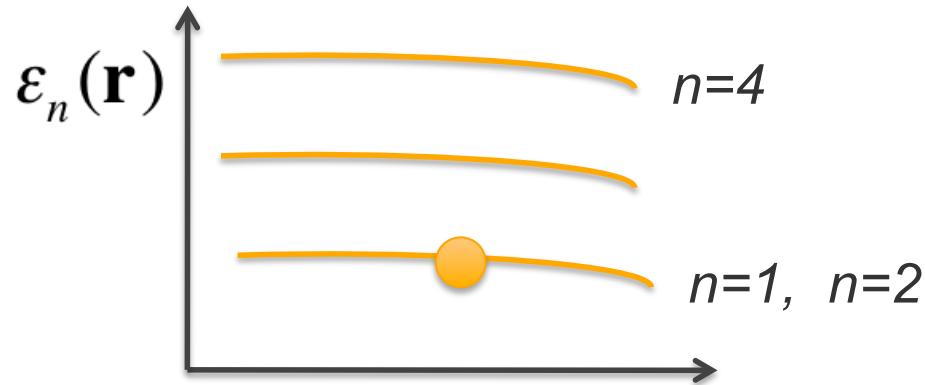
\mathbf{A} appears due to position-dependence of $|\chi_n(\mathbf{r})\rangle$

If A_x, A_y, A_z do not commute, $\mathbf{B} \neq 0$ even if \mathbf{A} is constant !!

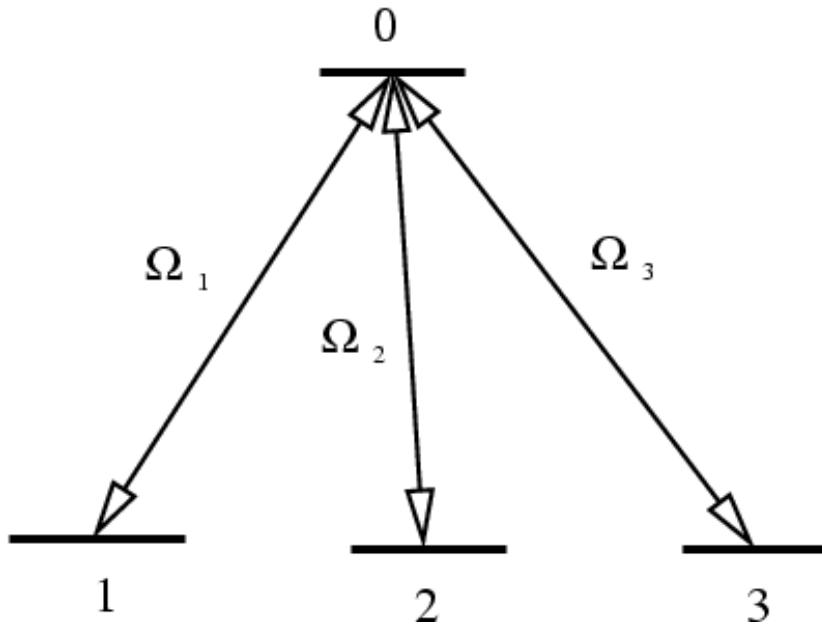
→ Non-Abelian gauge potentials are formed

Non-Abelian gauge potentials

More than one degenerate dressed state

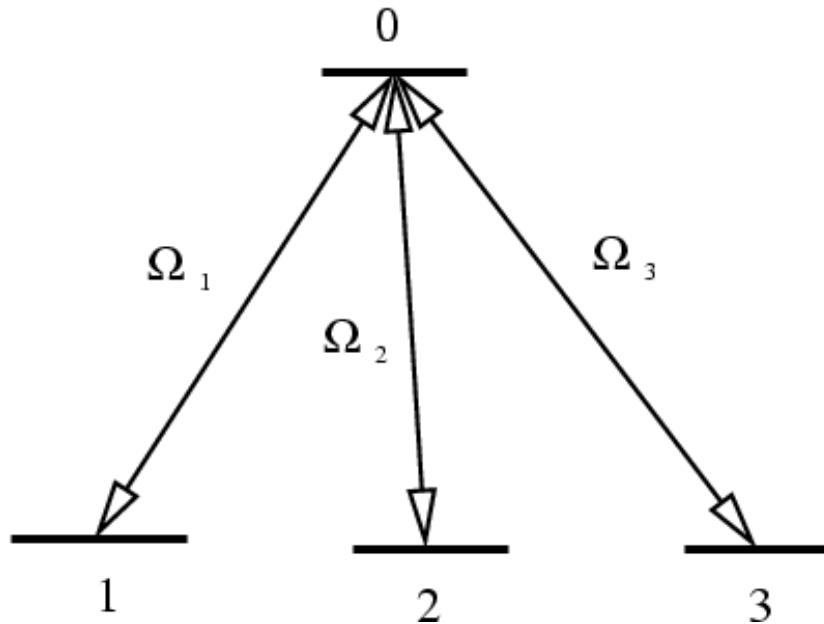


Tripod configuration



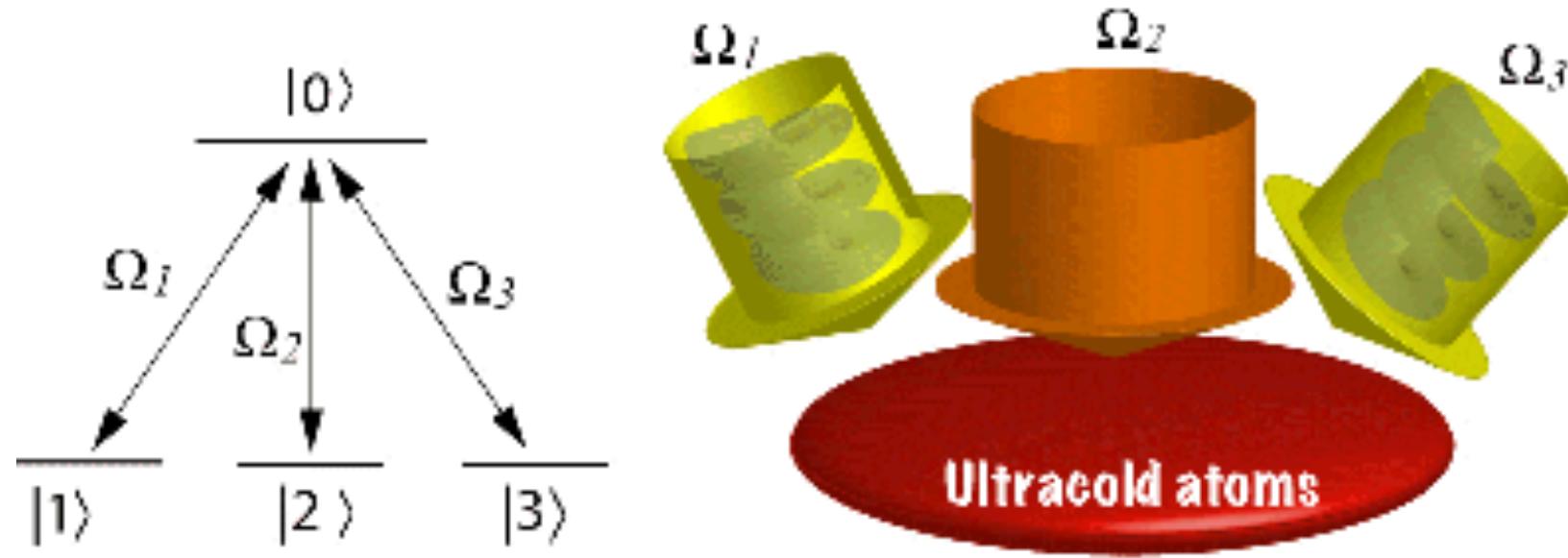
- M.A. Ol'shanii, V.G. Minogin, Quant. Optics 3, 317 (1991)
- R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, Opt. Commun. 155, 144 (1998)
- **Two degenerate dark states**
- (Superposition of atomic ground states **immune** of the atom-light coupling)

Triod configuration



- **Two degenerate dark states**
- *(Superposition of atomic ground states **immune** of the atom-light coupling)*
- **Dark states: destructive interference** for transitions to the excited state
- **Lasers keep the atoms in these **dark (dressed) states****

(Non-Abelian) light-induced gauge potentials

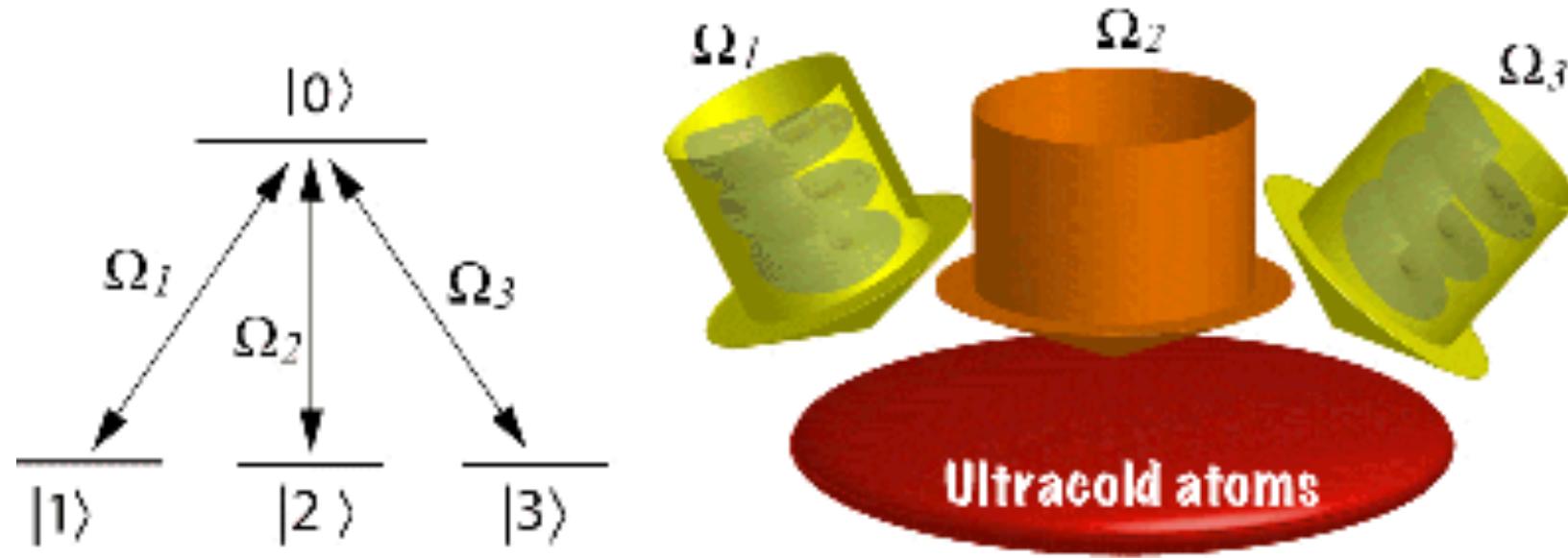


for centre of mass motion of dark-state atoms:
(Due to the spatial dependence of the dark states)

↗ (two dark states)

J. Ruseckas, G. Juzeliūnas and P. Öhberg, and M. Fleischhauer, Phys. Rev. Letters 95, 010404 (2005).

(Non-Abelian) light-induced gauge potentials

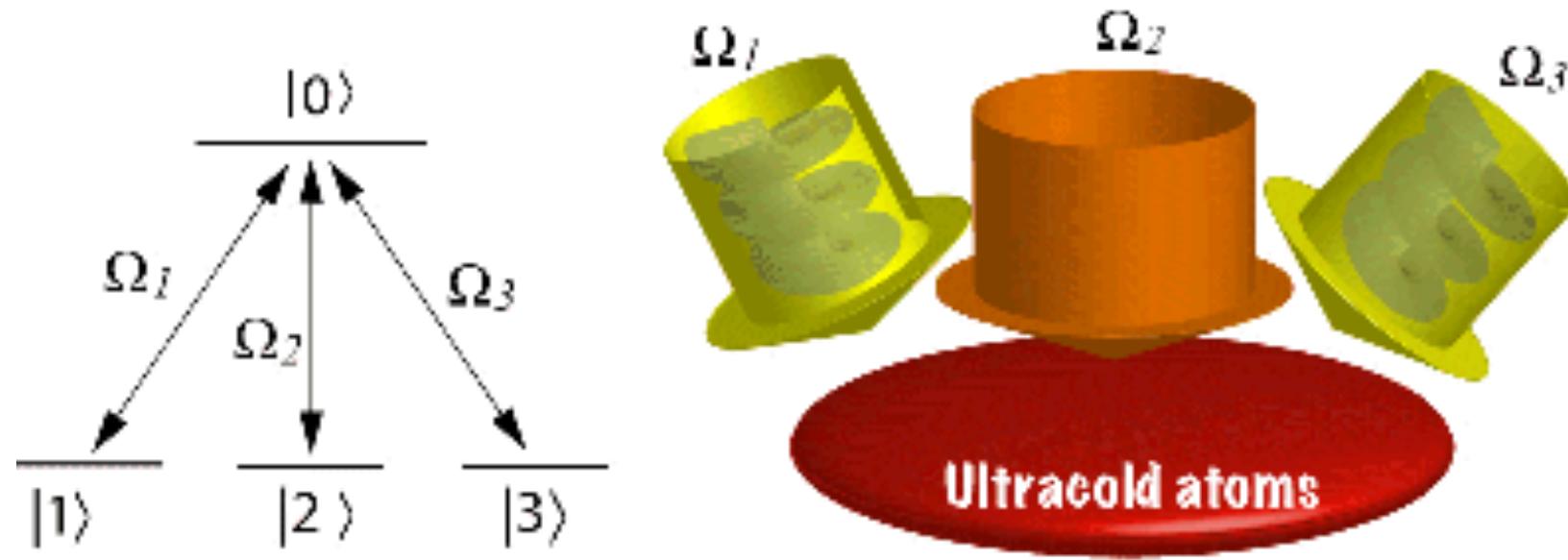


for centre of mass motion of dark-state atoms:
(Due to the spatial dependence of the dark states)

$$\mathbf{A}_{n,m} = i\hbar \langle D_n(\mathbf{r}) | \nabla D_m(\mathbf{r}) \rangle \quad \blacktriangleright \text{(two dark states)}$$

J. Ruseckas, G. Juzeliūnas and P. Öhberg, and M. Fleischhauer, Phys. Rev. Letters 95, 010404 (2005).

(Non-Abelian) light-induced gauge potentials



Centre of mass motion of dark-state atoms:

$$i\hbar \frac{\partial}{\partial t} \Psi = \left[\frac{1}{2m} (-i\hbar \nabla - \mathbf{A})^2 + V + \Phi \right] \Psi, \leftarrow \text{Two component atomic wave-function}$$

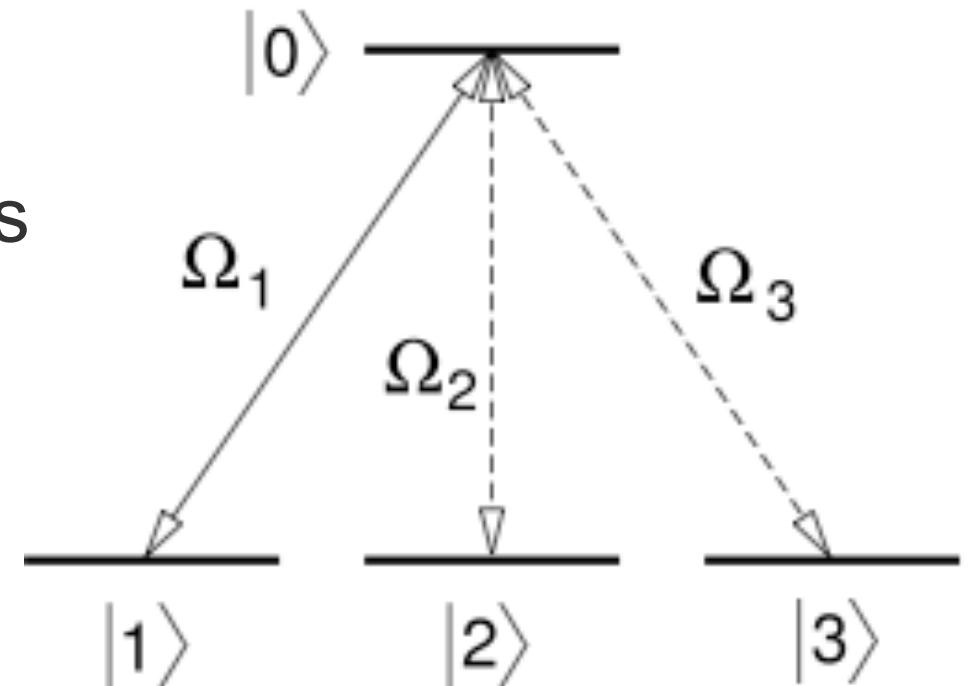
$$\mathbf{A}_{n,m} = i\hbar \langle D_n(\mathbf{r}) | \nabla D_m(\mathbf{r}) \rangle \quad - \text{2x2 matrix}$$

\mathbf{A} - effective vector potential (Mead-Berry connection)

Tripod scheme

Two degenerate dark states

- \mathbf{A} is 2×2 matrix



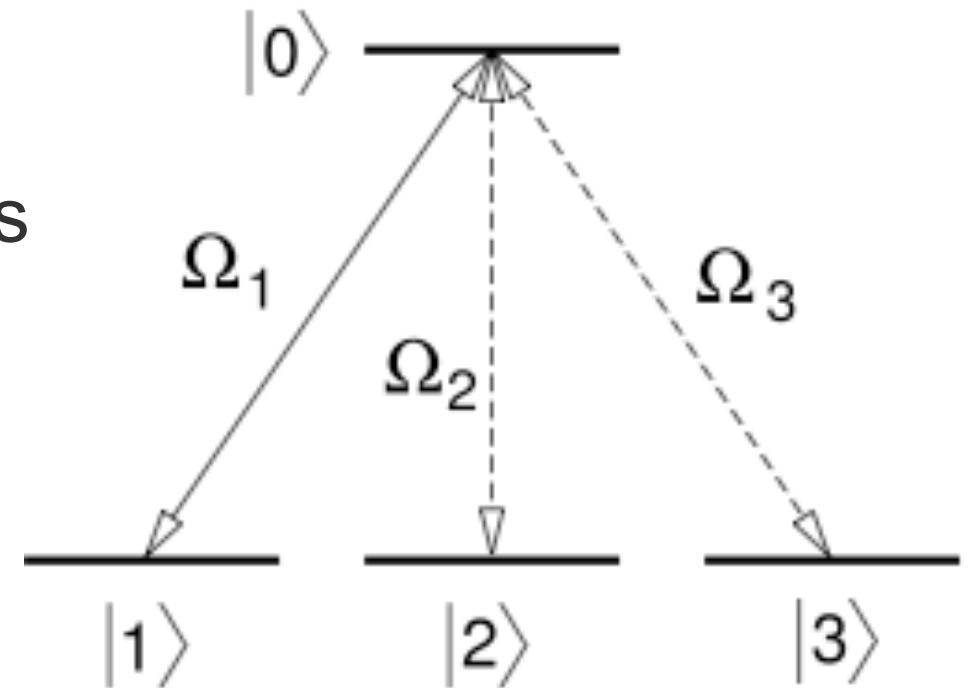
- Non-Abelian case if A_x, A_y, A_z do not commute

$$B_i = \frac{1}{2} \epsilon_{ikl} F_{kl}, \quad F_{kl} = \partial_k A_l - \partial_l A_k - \frac{i}{\hbar} [A_k, A_l]. \quad \mathbf{B} - \text{curvature}$$

Tripod scheme

Two degenerate dark states

- \mathbf{A} is 2×2 matrix



- Non-Abelian case if A_x, A_y, A_z do not commute

$$B_i = \frac{1}{2} \epsilon_{ikl} F_{kl}, \quad F_{kl} = \partial_k A_l - \partial_l A_k - \frac{i}{\hbar} [A_k, A_l]. \quad \mathbf{B} - \text{curvature}$$

- Can be achieved using a plane-wave setup

Three plane wave setup

T. D. Stanescu, C. Zhang, and V. Galitski,
Phys. Rev. Lett 99, 110403 (2007).

A. Jacob, P. Öhberg, G. Juzeliūnas and
L. Santos, *Appl. Phys. B.* **89**, 439 (2007).

$$\Psi(\mathbf{r},t) = \begin{pmatrix} \Psi_1(\mathbf{r},t) \\ \Psi_2(\mathbf{r},t) \end{pmatrix}$$

(centre of mass motion, dark-state atoms):

$$H = \frac{1}{2m}(-i\hbar\nabla - \hbar\kappa\sigma_{\perp})^2. \quad (\rightarrow \text{Rashba-type Hamiltonian})$$

$$H = \frac{1}{2M}(-i\hbar\nabla + \hbar\kappa\sigma_{\perp})^2 + V_1 \frac{1}{2} \text{ operator}$$

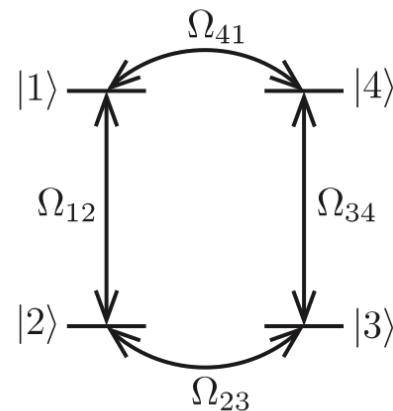
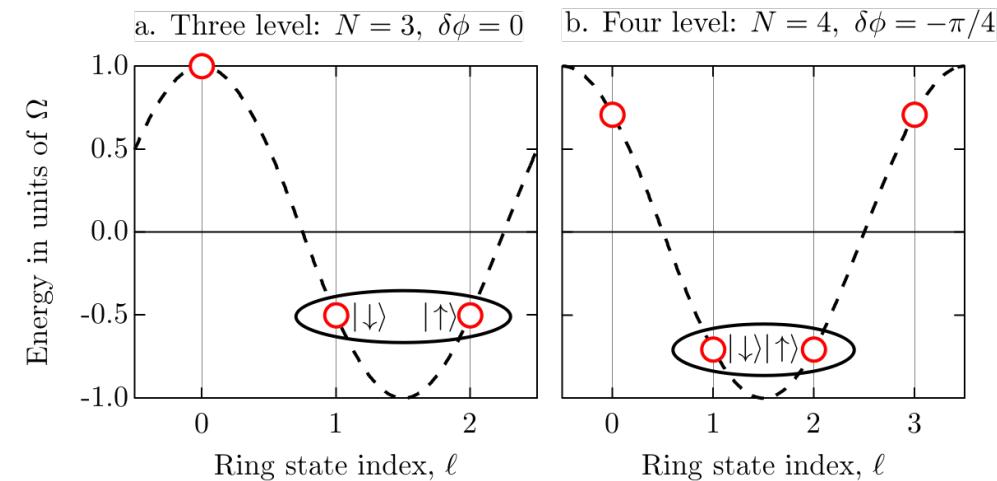
(acting on the subspace of atomic dark states)

→ Spin-Orbit coupling of the Rashba-Dresselhaus type

Constant non-Abelian **A** with $[A_x, A_y] \sim \sigma_z \rightarrow \mathbf{B} \sim \mathbf{e}_z$

- Drawback of the tripod scheme: degenerate dark states are not the ground atomic dressed states → **collision-induced loses**
- **Closed loop setup overcomes this drawback:**

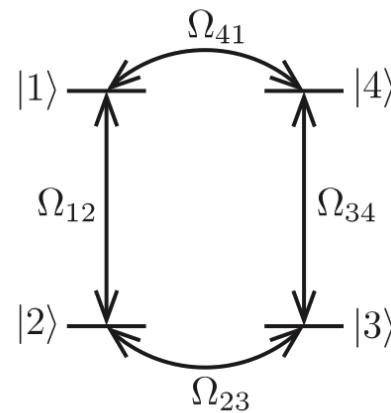
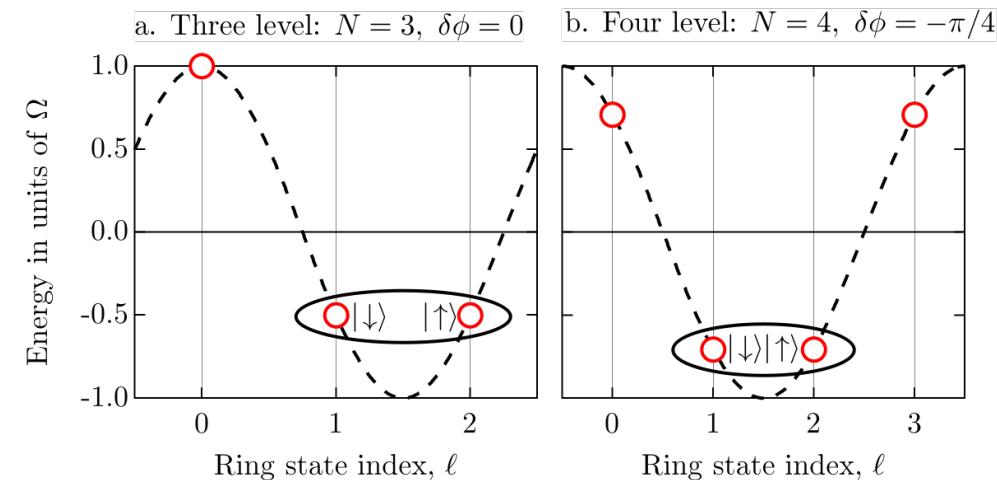
(a) Coupling scheme



D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011)

- Drawback of the tripod scheme: degenerate dark states are not the ground atomic dressed states → collision-induced loses
- **Closed loop setup overcomes this drawback:**

(a) Coupling scheme

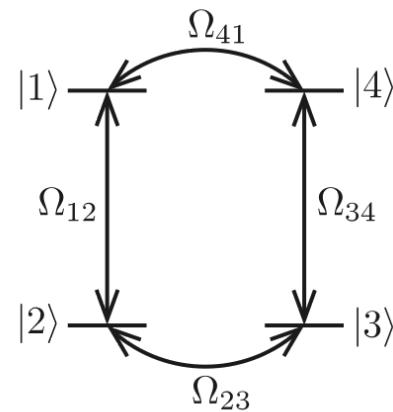
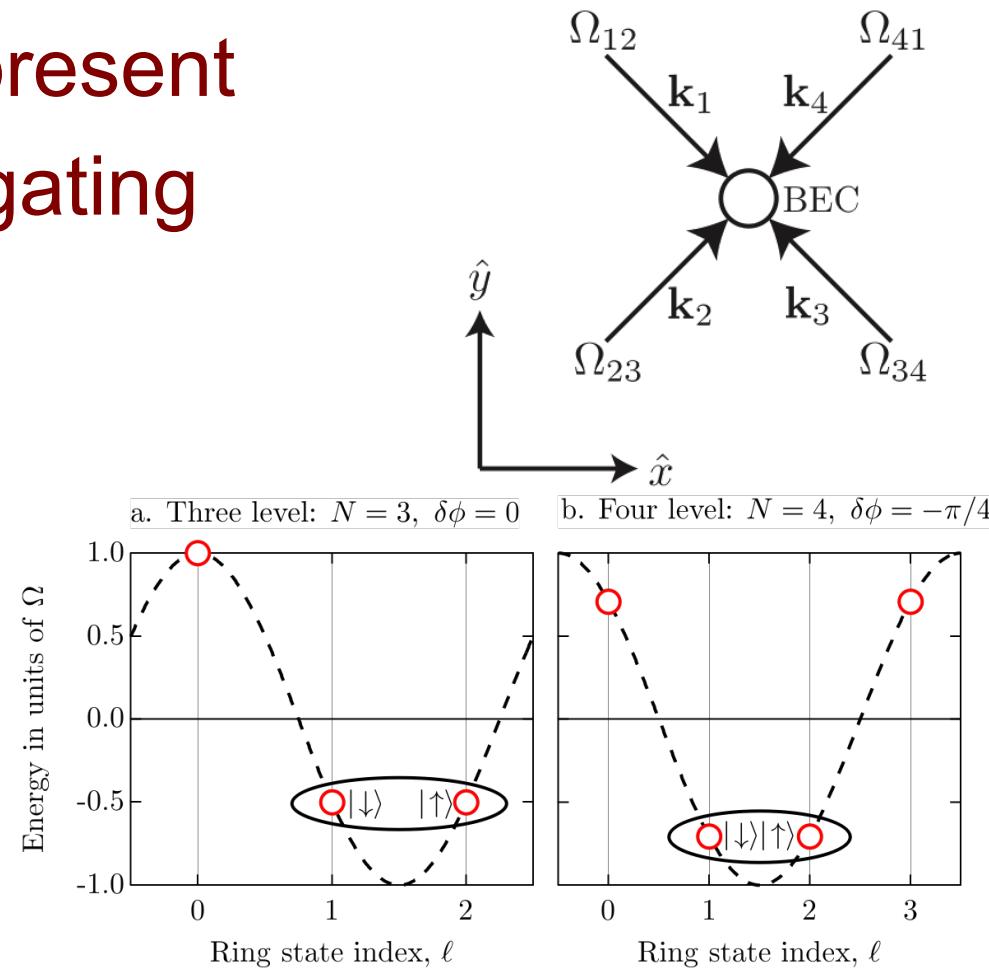


D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011)

- **Two degenerate** internal ground states
- → **non-Abelian gauge fields** for ground-state manifold

■ Laser fields represent Counter-propagating plane waves:

(a) Coupling scheme



→ Closed loop setup produce Rashba-Dresselhaus SO coupling for cold atoms

Conclusions

- Abelian gauge potentials appear if there is non-trivial spatial dependence of amplitudes or phases of laser fields (or spatial variation of atomic levels).
- Non-Abelian fields can be formed using even the plane-wave setups. They can simulate the spin 1/2 Rashba-type Hamiltonian for cold atoms.
- Spin 1 Rashba coupling can also be generated [G.J., J. Ruseckas and J. Dalibard, PRA 81, 053403 (2010)].
- For more see: J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg. *Colloquium: Artificial gauge potentials for neutral atoms*, Rev. Mod. Phys. 83, 1523 (2011)

Thank you!