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  A set of counter-propagating light beams      

(off resonance to the atomic transitions) 
   Atoms are trapped at intensity minima (or 
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3D cubic optical lattice: 

I. Bloch, Nature Phys. 1, 23 (2005) 
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Vdip r( ) = −d⋅ E r( ) = −α ωL( ) E r( )
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Optical lattices (more sophisticated) 
  Triangular or hexagonal optical lattice using 

three light beams (propagagating at 1200) 

  (a) Polarisations are perpendicular to the plane 
 Triangular lattice 

  (b) Polarisations are rotating in the plane          
 Hexagonal (spin-dependent) lattice 

  [traps differently atoms in different spin states] 



Ultracold atoms 
  Analogies with the solid state physics 

  Fermionic atoms ↔ Electrons in solids 
  Atoms in optical lattices – Hubbard model 
  Simulation of various many-body effects  

  Advantage : 
  Freedom in changing experimental parameters 

that are often inaccessible in standard solid state 
experiments 



Ultracold atoms 
  Analogies with the solid state physics 

  Fermionic atoms ↔ Electrons in solids 
  Atoms in optical lattices – Hubbard model 
  Simulation of various many-body effects  

  Advantage : 
  Freedom in changing experimental parameters 

that are often inaccessible in standard solid state 
experiments 

  e.g. number of atoms, atom-atom interaction, 
lattice potential 



Trapped atoms - electrically neutral species 

  No direct analogy with magnetic phenomena by 
electrons in solids, such as the Quantum Hall 
Effect (no Lorentz force)  

  A possible method to create an effective magnetic 
field (an artificial Lorentz force): 
 Rotation 
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Trapped atoms - electrically neutral particles 

  No direct analogy with magnetic phenomena by 
electrons in solids, such as the Quantum Hall 
Effect (no Lorentz force)  

  A possible method to create an effective magnetic 
field: 
 Rotation  Coriolis force   
 (Mathematically equivalent to Lorentz force)  
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Trap rotation 
Hamiltonian in the rotating frame  
[see e.g. A. Fetter, RMP 81, 647 (2009)]  
                                            Trapping potential 

or                                          rotation vector                                               

Effective vector potential        Centrifugal potential  
(constant Beff~Ω)                           (anti-trapping)  
Coriolis force (equivalent to Lorentz force) 



Trap rotation:  
Summary of the main features 

  Constant Beff:        Beff ∼ Ω   
  Trapping frequency: 
                         Landau problem 
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ROTATION 

  Can be applied to utracold atoms both in usual 
traps and also in optical lattices 

(a)  Ultracold atomic   
cloud (trapped): 

(b) Optical lattice: 

•  Not always convenient to rotate an atomic cloud 

•  Limited magnetic flux   Other methods are desirable 



Effective magnetic fields without rotation 

  Using (unconventional) optical lattices  
 Initial proposals: 
  J. Ruostekoski, G. V. Dunne, and J. Javanainen, 

Phys. Rev. Lett. 88, 180401 (2002) 
  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  E. Mueller, Phys. Rev. A 70, 041603 (R) (2004)  
  A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. 

Rev. Lett. 94, 086803 (2005) 

  Beff  is produced by inducing an asymmetry 
in atomic transitions between the lattice sites. 

  Non-vanishing phase for atoms moving along 
a closed path on the lattice (a plaquette)  

  → Simulates non-zero magnetic flux → Beff ≠ 0 



Effective magnetic fields without rotation 
  Optical square lattices 

  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  J. Dalibard and F. Gerbier, NJP 12, 033007 (2010). 
  -Ordinary tunneling along x direction (J). 
  -Laser-assisted tunneling between atoms in different 

internal states along y axis (with recoil along x).  

                                        J  

                               J’exp(-ikx1)         J’exp(ikx2) 

                                        J  
Atoms in different internal states (red or yellow) 

are trapped at different lattice sites 
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Effective magnetic fields without rotation 
  Optical square lattices 

  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  J. Dalibard and F. Gerbier, NJP 12, 033007 (2010). 
  -Ordinary tunneling along x direction (J). 
  -Laser-assisted tunneling between atoms in different 

internal states along y axis (with recoil along x).  

                                        J  

                               J’exp(-ikx1)         J’exp(ikx2) 

                                        J  

Staggered flux! 
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Effective magnetic fields without rotation 
  Optical square lattices 

  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  J. Dalibard and F. Gerbier, NJP 12, 033007 (2010). 
  -Ordinary tunneling along x direction (J). 
  -Laser-assisted tunneling between atoms in different 

internal states along y axis (with recoil along x).  

                                        J  

                               J’exp(-ikx1)         J’exp(ikx2) 

                                        J  
  Non-vanishing phase for the atoms moving over a 

plaquette:  S=k(x2-x1)=ka non-zero magnetic flux: 
  Experiment: M. Aidelsburger et al., PRL 107, 255301 

(2011) 

x

y



Effective magnetic fields without rotation 
  Optical square lattices 

  Experiment: M. Aidelsburger, M. Atala, S. Nascimbène, 
S. Trotzky, Yu-Ao Chen and I Bloch, PRL 107, 255301 
(2011) 

  -Ordinary tunneling along y direction. 
  -Laser-assisted tunneling along x axis (with recoil).  

                                          

   Non-zero magnetic flux over a plaquette 



Effective magnetic fields without rotation 

  Optical lattices:  
The method can be extended to create  
Non-Abelian gauge potentials 

 (Laser assisted, state-sensitive tunneling) 
A proposal: 

  K. Osterloh, M. Baig, L. Santos, P. Zoller and M. 
Lewenstein, Phys. Rev. Lett. 95, 010403 (2005) 



Effective magnetic fields without rotation 
  Optical square lattices 

  -Ordinary tunneling along x direction (J). 
  -Laser-assisted tunneling along y axis                   

(with recoil along x).  

                                        J  
                              
                              J’exp(-ikx1)         J’exp(ikx2) 

                                        J  

  Non-vanishing phase for the atoms moving over a 
(square) plaquette:  S=k(x2-x1)=ka 

  → Simulates non-zero magnetic flux  

x

y



Effective magnetic fields without rotation 
  Optical square lattices 

  However if laser-assisted tunneling is  
 along both x and y axis (with recoil e.g. along x) 

                              Jexp[ik(x1+x2)/2   
                                   
                               
                              J’exp(-ikx1)         J’exp(-ikx2) 

                                          
                              Jexp[ik(x1+x2)/2] 

  Vanishing phase for the atoms moving over a  
plaquette:  S=0 

  → Zero magnetic flux  

x

y



Effective magnetic fields without rotation 
  (Similarly) Optical hexagonal lattices 

  Laser-assisted tunneling of atoms trapped in two 
triangular sublattices  

   tjl=Jexp[ik(rj+rl)/2] 

  Vanishing phase for the atoms moving over a 
plaquette:  S=0     → Zero magnetic flux  
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Effective magnetic fields without rotation 
  (Similarly) Optical hexagonal lattices 
  If there is (a real-valued) NNN coupling  ta   

                                           ta 

   tjl=Jexp[ik(rj+rl)/2] 

  Non-vanishing phase for the atoms moving over a 
triangular plaquette:  S=0   → Non-zero magnetic flux  



Effective magnetic fields without rotation 
  Optical hexagonal lattices 

  Laser-assisted tunneling of atoms trapped in two 
triangular sublattices  

  Vanishing phase for the atoms moving over hexagonal 
plaquettes:  S=0       → Zero magnetic flux  
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Effective magnetic fields without rotation 
  Optical hexagonal lattices 

  Laser-assisted tunneling between two triangular 
sublattices 

   If NNN tunneling between the same sublattices  
 (ta and tb)  

  → Non-vanishing phase for the atoms moving over 
sub-plaquettes:       → Non-zero Chern number  

     (Haldane, PRL’1988) 
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 Chern numbers can be found from TFM ! (PRL’2011) 
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Effective magnetic fields without rotation 
  Optical hexagonal lattices 

  Laser-assisted tunneling between two triangular 
sublattices 

  NNN tunneling between the same sublattices 

  → Non-vanishing phase for the atoms moving over a sub-
plaquettes:       → Non-zero Chern numbers 

  Chern numbers can be found from TFM!  
  (momentum-dependence of atomic “spin” in TFM)  





Calculations by 
Ian Spielman: 

(numerical  
“experiment”) 



  Distinctive features: 
  No rotation is necessary  
  No lattice is needed  
  Yet a lattice can be an important ingredient in 

creating   Beff  using geometric potentials    
Optical flux lattices  

Effective magnetic fields without rotation 
-- using Geometric Potentials  



Geometric potentials 
  Emerge in various areas of physics (molecular, 

condensed matter physics etc.) 
   First considered by Mead, Berry, Wilczek and Zee 

and others in the 80’s (initially in the context of 
molecular physics). 

  More recently – in the context of motion of cold atoms 
affected by laser fields  
 (Currently: a lot of activities) 

  See, e.g.:     J.Dalibard, F. Gerbier, G. Juzeliūnas and P. 
Öhberg, Rev. Mod. Phys. 83, 1523 (2011). 

  Advantage of such atomic systems: possibilities to 
control and shape gauge potentials by choosing 
proper laser fields. 

. 



Creation of Beff using geometric potentials 

 ( r-dependent “dressed” eigenstates) 

 (includes r-dependent atom-light coupling) 

Atomic dynamics taking into account both internal degrees of 
freedom and also center of mass motion. 

(for c.m. motion) 
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  Adiabatic atomic energies  

  Full state vector: 

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state    

n=1 

n=2 

n=3 

r 
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Non-degenerate state with n=1 
  Adiabatic atomic energies  

  Full state vector: 

  Adiabatic approximation 

  What is the equation of motion for            ?   

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state    

n=1 

n=2 

n=3 

r 



Adiabatic approximation: 

n=1 

n=2 

n=3 

r 

Non-degenerate state with n=1 



Adiabatic approximation: 

Equation of the atomic motion  
in the internal state  

n=1 

n=2 

n=3 

r 

€ 

ˆ H =
p−A11( )2

2M
+ V (r) + ε1(r)

Effective Vector potential              appears 

€ 

A11 ≡A

Non-degenerate state with n=1 
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 Large possibilities to control and shape the effective 
magnetic field B by changing the light beams 

- effective magnetic field (non-trivial situation if           ) 

Effective Vector potential              appears (due to the position-
dependence of the atomic internal “dressed” state          )  

€ 

A11 ≡A

To summarise 



Light induced effective magnetic field 
can be due to 

1.  Spatial dependence of laser amplitudes 
2.  Spatial dependence of atom-light detuning 
3.  Spatial dependence of both the laser 

amplitudes and also atom-light detuning  
 (e.g. optical flux lattices) 
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Counter-propagating beams with 
spatially shifted profiles 

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 
Phys. Rev. A 73, 025602 (2006).] 

Artificial Lorentz force 
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Counter-propagating beams with 
spatially shifted profiles 

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 
Phys. Rev. A 73, 025602 (2006).] 

Artificial Lorentz force (due to photon recoil) 

L  

€ 

B =∇ ×A ≠ 0



Counter-propagating beams with 
spatially shifted profiles 

€ 

Φ≈ kL

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 
Phys. Rev. A 73, 025602 (2006).] 

Total magnetic flux is proportional to the sample length L:  

L  

(one can not increase the total flux in the transverse direction)  



Counter-propagating beams with 
spatially shifted profiles 

€ 

Φ≈ kL

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 
Phys. Rev. A 73, 025602 (2006).] 

Total magnetic flux is proportional to the sample length L:  

L  

(one can not increase the total flux in the transverse direction)  

  No lattice 

No translational symmetry for shifted beams (in the transverse direction):  



Light induced effective magnetic field 
due to 

  Spatial dependence of laser amplitudes 
  Spatial dependence of atom-light detuning 



§ 



§ 



§ 

Position-dependent detuning δ 



§ 

Position-dependent detuning δ=δ(y)            B≠0 



Light induced effective magnetic field 
due to 
  Spatial dependence of atom-light detuning 

 Magnetic flux is again determined by the sample 
length (rather than the area)! 

 One can not create large magnetic flux 

Detuning δ=δ(y) 



Light induced effective magnetic field 
can be due to 

1.  Spatial dependence of laser amplitudes 
2.  Spatial dependence of atom-light detuning 
3.  Spatial dependence of both the laser 

amplitudes and also atom-light detuning  



Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
e.g.  Optical flux lattices 

  N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011) 
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Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
e.g.  Optical flux lattices 

  N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011) 

  Related earlier work: 
  A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu, 

Phys. Rev. Lett. 92, 153005 (2004). 

Magnetic flux is determined by the area (!!!) of atomic cloud  
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  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 
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Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 

  

€ 

ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Ωx≠0,  Ωy≠0,    Coupling between the atomic states  

€ 

χ j r( )

€ 

ˆ H 0 r( ) has position-dependent eigenstates            ,   j=1,2     



  Effective vector potential for atomic motion in 
the lower dressed state         :          

n=1 

n=3 

n=2 

€ 

ˆ H 0 r( ) χ j r( ) = ε j r( ) χ j r( ) (j=1,2),     
  

€ 

ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

A r( ) =

2
cosθ −1( )∇φ

Ω

Ωy 

Ωx 

Ωz 

€ 

θ

€ 

φ

See, e.g.:     J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg.  
       Rev. Mod. Phys. 83, 1523 (2011). 



 Optical flux lattices 
Two-level system: 

Periodic coupling                and periodic detuning   
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 Optical flux lattices 
Two-level system: 

Periodic coupling                and periodic detuning   

Periodic vector potential                          with 
 (B – non-staggered)!!! 
Periodic trapping potential  

 Optical flux lattice!!! 

€ 

Ωx =Ω⊥cos(xπ /a)

€ 

Ωy =Ω⊥cos(yπ /a)

€ 

Ωz =ΩII sin(xπ /a)sin(yπ /a)

€ 

B =∇ ×A ≠ 0



 Optical flux lattices (square) 

Non-zero background magnetic flux over an elementary cell 



 Optical flux lattices (square) 

Non-zero background magnetic flux over an elementary cell 
Periodic trapping potential (the lattice) 



OFL can be produced   
  Using Raman transitions between the 

hyperfine states of alkali atoms (and specially 
shaped laser fields) 
Triangular optical flux lattice 
N. R. Cooper and J. Dalibard, EPL, 95 (2011) 66004. 

Square optical flux lattice: 
G. Juzeliunas and I.B. Spielman, in preparation 
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induced gauge potentials 
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  Effective magnetic field can be shaped by 
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Characteristic features of light-
induced gauge potentials 

  No rotation of atomic gas 
  Effective magnetic field can be shaped by 

choosing proper laser beams 
  The magnetic flux can be made proportional 

to the area using the optical flux lattices 
  Generation of dynamical gauge fields??? 
  Extension to the non-Abelian case 



If one degenerate atomic internal 
dressed state 

-- Abelian gauge potentials  



Adiabatic approximation: 

Equation of the atomic motion  
in the internal state  

n=1 

n=2 

n=3 

r 

€ 

ˆ H =
p−A11( )2

2M
+ V (r) + ε1(r)

Effective Vector potential              appears 

€ 

A11 ≡A

Non-degenerate state with n=1 

- effective magnetic field (non-trivial situation if           ) 



If more than one degenerate 
atomic internal dressed state 

--Non-Abelian gauge 
potentials  



Adiabatic approximation: 
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n=4 

Degenerate states with n=1 and  n=2  

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state (n=1,2)    



Adiabatic approximation: 
n=3 

r 
n=1,  n=2 

n=4 

Degenerate states with n=1 and  n=2  

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state (n=1,2)    

- two-component atomic wave-function 
(spinor wave-function) 
 Quasi-spin 1/2 

€ 

Ψ(r, t) =
Ψ1(r,t)
Ψ2(r,t)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Repeating the same procedure … 
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Equation of motion:  
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ˆ H =
p −A( )2

2M
+V (r) +ε1(r)

         appears  due to position-dependence of  
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A

Degenerate states with n=1 and  n=2  

- effective vector potential 

- effective magnetic field (non-trivial situation if          ) 

-  two-comp. atomic  
  wave-function 

2x2 matrix 

2x2 matrix 

If  Ax, Ay, Az do not commute, B≠0  even if A is constant !! 
 Non-Abelian gauge potentials are formed                                                                  
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Ψ(r, t) =
Ψ1(r,t)
Ψ2(r,t)
⎛ 

⎝ 
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⎞ 

⎠ 
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Non-Abelian gauge potentials  

  More than one degenerate dressed state 

n=1,  n=2 

n=4 



Tripod configuration 

  M.A. Ol’shanii, V.G. Minogin, Quant. Optics 3, 317 (1991) 
  R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. 

Bergmann, Opt. Commun. 155, 144 (1998) 
  Two degenerate dark states 
  (Superposition of atomic ground states immune of the atom-

light coupling) 



Tripod configuration 

  Two degenerate dark states 
  (Superposition of atomic ground states immune of the atom-

light coupling) 
  Dark states: destructive interference for transitions to the 

excited state 
  Lasers keep the atoms in these dark (dressed) states 



(Non-Abelian) light-induced gauge potentials 

for centre of mass motion of dark-state atoms: 
(Due to the spatial dependence of the dark states) 

J. Ruseckas, G. Juzeliūnas and P.Öhberg, and M. 
Fleischhauer, Phys. Rev. Letters 95, 010404 (2005). 

 (two dark states) 



(Non-Abelian) light-induced gauge potentials 

for centre of mass motion of dark-state atoms: 
(Due to the spatial dependence of the dark states) 

J. Ruseckas, G. Juzeliūnas and P.Öhberg, and M. 
Fleischhauer, Phys. Rev. Letters 95, 010404 (2005). 

 (two dark states) 



(Non-Abelian) light-induced gauge potentials 

Centre of mass motion of dark-state atoms:  

A - effective vector potential (Mead-Berry connection) 

-  2x2 matrix 

  Two component atomic  
      wave-function 



Tripod scheme 

  A  is  2×2  matrix 

  Non-Abelian case if  Ax, Ay, Az do not commute 

                                                        B – curvature 

Two degenerate dark states 



Tripod scheme 

  A  is  2×2  matrix 

  Non-Abelian case if  Ax, Ay, Az do not commute 

                                                        B – curvature 

     Can be achieved using a plane-wave setup                                                               

Two degenerate dark states 



Three plane wave setup 

(centre of mass motion, dark-state atoms):  

 (acting on the subspace of atomic dark states)  

 Spin-Orbit coupling of the Rashba-Dresselhaus type   

 Constant non-Abelian A with [Ax,Ay]~σz     B ~ ez 

( Rashba-type Hamilltonian) 

–  spin ½  operator 

T. D. Stanescu,, C. Zhang, and V. Galitski,  
Phys. Rev. Lett 99, 110403 (2007). 
A. Jacob, P. Öhberg, G. Juzeliūnas and  
L. Santos, Appl. Phys. B. 89, 439 (2007). 
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  Drawback of the tripod scheme: degenerate 
dark states are not the ground atomic 
dressed states  collision-induced loses 

  Closed loop setup overcomes this drawback: 

D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011) 



  Drawback of the tripod scheme: degenerate 
dark states are not the ground atomic 
dressed states  collision-induced loses 

  Closed loop setup overcomes this drawback: 

  Two degenerate internal ground states  
   non-Abelian gauge fields for ground-state manifold 

D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011) 



  Laser fields represent  
 Counter-propagating 
 plane waves: 

 Closed loop setup produce Rashba-
Dresselhaus SO coupling for cold atoms 

D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011) 



Conclusions 
  Abelian gauge potentials appear if there is non-trivial 

spatial dependence of amplitudes or phases of laser 
fields (or spatial variation of atomic levels). 

  Non-Abelian fields can be formed using even the 
plane-wave setups. They can simulate the spin 1/2 
Rashba-type Hamiltonian for cold atoms.  

  Spin 1 Rashba coupling can also be generated  
 [G.J., J. Ruseckas and J. Dalibard, PRA 81, 053403 (2010)]. 

   For more see:     J.Dalibard, F. Gerbier, G. Juzeliūnas 
and P. Öhberg. Colloquium: Artificial gauge potentials for 
neutral atoms, Rev. Mod. Phys. 83, 1523 (2011) 



Thank you! 


