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Cold atoms are trapped using:

1. (Parabolic) trapping potential produced by
magnetic or optical means:
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Optical lattices (ordinary): [Last 10 years]

= A set of counter-propagating light beams
(off resonance to the atomic transitions)

|. Bloch, Nature Phys. 1, 23 (2005)




Optical lattices (ordinary)

A set of counter-propagating light beams
(off resonance to the atomic transitions)

- Atoms are trapped at intensity minima (or
intensity maxima) of the interference pattern

(depending on the sign of atomic polarisability)
v, (1) = -a- E(r) = ~o{o, |E(r)] |. Bloch, Nature Phys. 1, 23 (2005)
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Optical lattices (ordinary)

A set of counter-propagating light beams
(off resonance to the atomic transitions)

- Atoms are trapped at intensity minima (or
intensity maxima) of the interference pattern

(depending on the sign of atomic polarisability)
V,,(r) = -d- E(r) = (o, )|E(r)’ |. Bloch, Nature Phys. 1, 23 (2005)

2D square optical lattice: 7_5’»%

3D cubic optical lattice: | |




Optical lattices (more sophisticated)

Triangular or hexagonal optical lattices using
three light beams (propagagating at 12009)



Optical lattices (more sophisticated)

Triangular or hexagonal optical lattices using
three light beams (propagagating at 12009)

Experiment:
New Journal of Physics

The open-access journal for physics

Ultracold quantum gases in triangular optical lattices
New Journal of Physics 12 (2010) 065025 (17pp)

C Becker'*, P Soltan-Panahi’, J Kronjidger*, S Dérscher’,
K Bongs® and K Sengstock’

namre
- ARTICLES
physics

Multi-component quantum gases in
spin-dependent hexagonal lattices

P. Soltan-Panahi’, J. Struck’, P. Hauke?, A. Bick', W. Plenkers’, G. Meineke’, C. Becker’,
P. Windpassinger', M. Lewenstein®* and K. Sengstock'*
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Optical lattices (more sophisticated)

Triangular or hexagonal optical lattice using
three light beams (propagagating at 12009)

(a) Polarisations are ppendicular to the plane
-> Triangular lattice

(b) Polarisations are rotating in the plane
- Hexagonal lattice:

-> Analogies with electrons graphene
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Optical lattices (more sophisticated)

Triangular or hexagonal optical lattice using
three light beams (propagagating at 12009)

(a) Polarisations are ppendicular to the plane
-> Triangular lattice

(b) Polarisations are rotating in the plane
- Hexagonal (spin-dependent) lattice

[traps differently atoms in different spin states]




Ultracold atoms

Analogies with the solid state physics
a Fermionic atoms < Electrons in solids

o Atoms in optical lattices — Hubbard model
o Simulation of various many-body effects

Advantage :

o Freedom in changing experimental parameters
that are often inaccessible in standard solid state
experiments



Ultracold atoms

Analogies with the solid state physics
a Fermionic atoms < Electrons in solids

o Atoms in optical lattices — Hubbard model
o Simulation of various many-body effects

Advantage :

o Freedom in changing experimental parameters
that are often inaccessible in standard solid state
experiments

0 e.g. number of atoms, atom-atom interaction,
lattice potential



Trapped atoms - electrically neutral species

No direct analogy with magnetic phenomena by
electrons in solids, such as the Quantum Hall

Effect (no Lorentz force)

A possible method to create an effective magnetic
field (an artificial Lorentz force):

Rotation
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Trapped atoms - electrically neutral particles

No direct analogy with magnetic phenomena by
electrons in solids, such as the Quantum Hall
Effect (no Lorentz force)

A possible method to create an effective magnetic
field:

Rotation - Coriolis force
(Mathematically equivalent to Lorentz force)




Trap rotation
Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]
Trapping potential

H)=p*/(2M)+ %Mwi(ﬂ-r)(p
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Trap rotation
Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]
Trapping potential

H)=p*/(2M)+ %Mwi(ﬂ-r)(p

or \ rotation vector
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Trap rotation
Hamiltonian in the rotating frame

[see e.g. A. Fetter, RMP 81, 647 (2009)]
Trapping potential

H!=p*/ (2M) + MwL{Q rXp

or \ rotation vector

(p-MQ Xr)* 1 )
M \ M(a)l Q)r2

Effective vector potential Centrifugal potential
T(constant B.«~Q) (anti-trapping)
Coriolis force (equivalent to Lorentz force)

H,=




Trap rotation:
Summary of the main features

o Constant B_g: B~ €2

o Trapping frequency: o, = o} -’
0 QL—o, Landau problem



ROTATION

= Can be applied to utracold atoms both in usual

traps and also in optical lattices

(a) Ultracold atomic (b) Optical lattice:
cloud (trapped):




ROTATION

= Can be applied to utracold atoms both in usual

traps and also in optical lattices

(a) Ultracold atomic (b) Optical lattice:
cloud (trapped):

* Not always convenient to rotate an atomic cloud

« Limited magnetic flux



ROTATION

= Can be applied to utracold atoms both in usual
traps and also in optical lattices

(a) Ultracold atomic (b) Optical lattice:
cloud (trapped):

* Not always convenient to rotate an atomic cloud

* Limited magnetic flux - Other methods are desirable



Etfective magnetic fields without rotation

Using (unconventional) optical lattices

Initial proposals:

o J. Ruostekoski, G. V. Dunne, and J. Javanainen,
Phys. Rev. Lett. 88, 180401 (2002)

o D. Jaksch and P. Zoller, New J. Phys. §, 56 (2003)

o E. Mueller, Phys. Rev. A 70, 041603 (R) (2004)

o A. S. Sagrensen, E. Demler, and M. D. Lukin, Phys.
Rev. Lett. 94, 086803 (2005)

B, IS produced by inducing an asymmetry

In atomic transitions between the lattice sites.

Non-vanishing phase for atoms moving along
a closed path on the lattice (a plaquette)

— Simulates non-zero magnetic flux — B_;# O




Etfective magnetic fields without rotation

Optical square lattices
o D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
o J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).

o -Ordinary tunneling along x direction (J).

o -Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).

X
Q J
y
0 J'exp(-ikx,) J'exp(ikx,)
0 i i J i i
Atoms in different internal states (red or )

are trapped at different lattice sites



Etfective magnetic fields without rotation

Optical square lattices
D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).
-Ordinary tunneling along x direction (J).
-Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).

X

O O 0 O

Q J'exp(-ikx,) J'exp(ikx,)

2 — Eamrin —
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Etfective magnetic fields without rotation
Optical square lattices

O O 0 O

D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).

-Ordinary tunneling along x direction (J).

-Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).
X
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Non-vanishing phase for the atoms moving over a

plaquette: S=k(x,-x,)=ka



Etfective magnetic fields without rotation
Optical square lattices

O O 0 O

D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).

-Ordinary tunneling along x direction (J).

-Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).
X

J'exp(-ikx,) J'exp(ikx,)

2  Daarin —

a

Non-vanishing phase for the atoms moving over a

plaquette: S=k(x,-x,)=ka
— Simulates non-zero magnetic flux (over plaquette)




Etfective magnetic fields without rotation

Optical square lattices
D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).

-Ordinary tunneling along x direction (J).

-Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).
X

O O 0 O

y
Q J'exp(-ikx,) J'exp(ikx,)

- M. e
Staggered flux!



Etfective magnetic fields without rotation

Optical square lattices
o D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003)
o J. Dalibard and F. Gerbier, NJP 12, 033007 (2010).
o -Ordinary tunneling along x direction (J).
o -Laser-assisted tunneling between atoms in different
internal states along y axis (with recoil along x).
X

Q J'exp(-ikx,) J'exp(ikx,)

2  Daarin —

o Non-vanishing phase for the atoms moving over a
plaquette: S=k(x,-x;)=ka ->non-zero magnetic flux:

o Experiment: M. Aidelsburger et al., PRL 107, 255301
(2011)




Etfective magnetic fields without rotation

Optical square lattices

o Experiment: M. Aidelsburger, M. Atala, S. Nascimbeéne,
S. Trotzky, Yu-Ao Chen and | Bloch, PRL 107, 255301
(2011)

o -Ordinary tunneling along y direction.

o -Laser-assisted tunneling along x axis (with recoil).
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Ettective magnetic fields without rotation

Optical lattices:
The method can be extended to create
Non-Abelian gauge potentials

(Laser assisted, state-sensitive tunneling)

A proposal:

o K. Osterloh, M. Baig, L. Santos, P. Zoller and M.
Lewenstein, Phys. Rev. Lett. 95, 010403 (2005)




Etfective magnetic fields without rotation

Optical square lattices
o -Ordinary tunneling along x direction (J).

o -Laser-assisted tunneling along y axis
(with recoil along x).

X
0 J

Q

a J'exp(-ikx,) J'exp(ikx,)
a i i J i i

o Non-vanishing phase for the atoms moving over a
(square) plaquette: S=k(x,-X,)=ka
0 — Simulates non-zero magnetic flux

y




Etfective magnetic fields without rotation

Optical square lattices
o However if laser-assisted tunneling is
along both x and y axis (with recoil e.g. along x)

J

i ¥ Jexp[ik(x, +x2)/2i
J'exp(-ikx,) J'exp(-ikx,)

ol d

Jexplik(x,+x,)/2]

o O O

o Vanishing phase for the atoms moving over a
plaquette: S=0

o — Zero magnetic flux




Etfective magnetic fields without rotation

(Similarly) Optical hexagonal lattices

o Laser-assisted tunneling of atoms trapped in two
triangular sublattices i

t=Jexp[ik(ri+r)/2]

— —

o Vanishing phase for the atoms moving over a
plaquette: S=0 — Zero magnetic flux
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o unless there is (a real-valued) NNN coupling t,
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Etfective magnetic fields without rotation

(Similarly) Optical hexagonal lattices
If there is (a real-valued) NNN coupling t, =2

—

t

a

t=Jexp[ik(ri+r)/2]

— —

o Non-vanishing phase for the atoms moving over a
triangular plaquette: S=0 — Non-zero magnetic flux




Etfective magnetic fields without rotation

= Optical hexagonal lattices

o Laser-assisted tunneling of atoms trapped in two
triangular sublattices

o Vanishing phase for the atoms moving over hexagonal
plaquettes: S=0 — Zero magnetic flux




Etfective magnetic fields without rotation

= Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o |[f NNN tunneling between the same sub-lattices

(t,and t)) a)
@




Etfective magnetic fields without rotation

Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o |[f NNN tunneling between the same sublattices

(t,and t)) a)
@

o — Non-vanishing phase for the atoms moving over
(triangular) sub-plaquettes




Etfective magnetic fields without rotation

Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o |[f NNN tunneling between the same sublattices

(t,and t)) a)
@

o — Non-vanishing phase for the atoms moving over
sub-plaquettes: — Non-zero Chern number

(Haldane, PRL'1988)




Etfective magnetic fields without rotation

Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o |[f NNN tunneling between the same sublattices

(t,and t)) a)
@

o — Non-vanishing phase for the atoms moving over
sub-plaquettes: — Non-zero Chern numbers
Chern numbers can be found from TFM ! (PRL2011)




Etfective magnetic fields without rotation

Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o NNN tunneling between the same sublattices

|&d Selected for a Viewpoint in Physics week ending
PRL 107, 235301 (2011) PHYSICAL REVIEW LETTERS 2 DECEMBER 2011

£

Seeing Topological Order in Time-of-Flight Measurements

E. Alba,' X. Fernandez-Gonzalvo,' J. Mur-Petit,' J. K. Pachos,” and J. J. Garcia-Ripoll’

'Instituto de Fisica Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain
2School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
(Received 27 May 2011; revised manuscript received 31 August 2011; published 28 November 2011)

o — Non-vanishing phase for the atoms moving over a
sub-plaquettes: — Non-zero Chern numbers

o Chern numbers can be found from TFM !




Etfective magnetic fields without rotation

Optical hexagonal lattices

o Laser-assisted tunneling between two triangular
sublattices

o NNN tunneling between the same sublattices

|&d Selected for a Viewpoint in Physics week ending
PRL 107, 235301 (2011) PHYSICAL REVIEW LETTERS 2 DECEMBER 2011

£

Seeing Topological Order in Time-of-Flight Measurements

E. Alba,' X. Fernandez-Gonzalvo,' J. Mur-Petit,' J. K. Pachos,” and J. J. Garcia-Ripoll’

'Instituto de Fisica Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain
2School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
(Received 27 May 2011; revised manuscript received 31 August 2011; published 28 November 2011)

o — Non-vanishing phase for the atoms moving over a sub-
plaquettes: — Non-zero Chern numbers

o Chern numbers can be found from TFM!
o (momentum-dependence of atomic “spin” in TFM)




PhyéTc‘s Physics 4, 9 (2011)

A Viewpoint on:

Seeing Topological Order in Time-of-Flight Measurements
Viewpoint E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll
Phys. Rev. Lett. 107, 235301 (2011) — Published November 28, 2011

Seeing Topological Order

Gediminas Juzeliunas
Gediminas Juzelitinas is a principal researcher and a deputy director at the Institute of

Theoretical Physics and Astronomy of Vilnius University, Lithuania. He is also professor
of physics at Lithuanian University of Educational Sciences in Vilnius. Dr. Juzeliiinas
completed his Ph.D. in 1986 in theoretical condensed matter physics at Vilnius University,
studying optical properties of excitons in confined geometries. Subsequently he held a
. two-year postdoctoral appointment at the University of East Anglia, England, shifting his
research area towards quantum optics. Dr. Juzeliinas was a Humboldt Research Fellow at
the University of Ulm, Germany (1997-1998), and a Fulbright Scholar at the University of
Oregon in the US (2000-2001). Dr. Juzeliiinas received a National State Prize for Science
of Lithuania in 2008 and a Vilnius University Rector’s award in 2010. His current research
focuses on ultracold atomic gases, slow light, metamaterials, and graphene. This includes a
pioneering theoretical work on light-induced gauge potential for ultracold atoms.

Ian Spielman in an experimentalist who received his Ph.D. in physics from the California
Institute of Technology in 2004, studying quantum Hall bilayers. From there he moved to
NIST in Gaithersburg, Maryland, for a two year NRC postdoc in the Laser Cooling and
Trapping group, studying the physics of the superfluid-to-insulator transition in 2D atomic
Bose gases. In 2006, he assumed his current position as a NIST physicist and a fellow
of the newly founded Joint Quantum Institute (JQI). His research interests focus on using
ultracold atomic systems to realize Hamiltonians familiar in condensed matter physics. This
includes the pioneering work on creating artificial gauge fields for neutral atoms using laser
atom interactions.




PhyéT(% Physics 4, 9 (2011)

A Viewpoint on:

Seeing Topological Order in Time-of-Flight Measurements
Viewpoint E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll
Phys. Rev. Lett. 107, 235301 (2011) — Published November 28, 2011

Seeing Topological Order

Calculations by =i

lan S P ielman: e

(numerlCa| :oﬂ.-;w; : E(:.;_:;__;. | 4.._;”,;.
“experiment”) T

Chern Numb

FIG. 1. Model System. a. Geometry of a Haldane-style lattice with two interpenetrating triangular
lattices. Laser induced complex valued hopping texp(i¢) (dashed links) allow non-zero Chern
numbers. b. Predicted projection of spin along along e., e,, and e;, as could be measured using
conventional time-of-flight imaging with ultracold atomic systems. ¢. Chern number as a function

of ¢ computed from 40x 40 images such as in b.



FEttective magnetic tields without rotation
-- using Geometric Potentials

Distinctive features:
o No rotation is necessary
o No lattice is needed

0 Yet a lattice can be an important ingredient in
creating B. s using geometric potentials -
Optical flux lattices




Geometric potentials
Emerge in various areas of physics (molecular,
condensed matter physics etc.)

First considered by Mead, Berry, Wilczek and Zee
and others in the 80’s (initially in the context of
molecular physics).

More recently — in the context of motion of cold atoms
affected by laser fields

(Currently: a lot of activities)

See, e.q.. J.Dalibard, F. Gerbier, G. Juzelitnas and P.
Ohberg, Rev. Mod. Phys. 83, 1523 (2011).

Advantage of such atomic systems: possibilities to
control and shape gauge potentials by choosing
proper laser fields.




Creation of B_, using geometric potentials

Atomic dynamics taking into account both internal degrees of
freedom and also center of mass motion.

@ The full atomic Hamiltonian



Creation of B_, using geometric potentials

Atomic dynamics taking into account both internal degrees of
freedom and also center of mass motion.

@ The full atomic Hamiltonian

o I%(r, t) — the Hamiltonian for the electronic (fast) degrees of
freedom, € (includes r-dependent atom-light coupling)

o p?/2M + V(r) — the Hamiltonian for center of mass (slow) degrees
of freedom.

o V/(r) — the external trapping potential (for c.m. motion)

o Hy(r,t) has eigenfunctions |xn(r, t)) with eigenvalues e(r, t).
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Creation of B_, using geometric potentials

Atomic dynamics taking into account both internal degrees of
freedom and also center of mass motion.

@ The full atomic Hamiltonian

o I%(r, t) — the Hamiltonian for the electronic (fast) degrees of

freedom, € (includes r-dependent atom-light coupling)
o p?/2M + V(r) — the Hamiltonian for center of mass (slow) degrees

of freedom. _
o V(r) — the external trapping potential (for c.m. motion)

o Ho(r, t) has eigenfunctions |xn(r, t)) with eigenvalues (r, t).
@ Full atomic wave function R ( r-dependent “dressed” eigenstates)

@) =) Wn(r, )]xn(r, 1))




N

Adiabatic atomic energies ¢ (r) n=3

n=2

Full state vector: n=1

@)= 3|, @)W, @0 > r

¥ (r,r) — wave-function of the atomic centre of mass motion
in the n-th atomic internal “dressed” state |x,@))



Non-degenerate state with n=1
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Non-degenerate state with n=1

N

Adiabatic atomic energies ¢ (r) n=3

n=2

Full state vector: n=1

@)= 3|, @)W, @0 > r

¥ (r,r) — wave-function of the atomic centre of mass motion
in the n-th atomic internal “dressed” state |x,@))

Adiabatic approximation

) =3, (x.1)

(only the atomic internal state with n=17 is included)



Non-degenerate state with n=1

Adiabatic atomic energies ¢

Full state vector:
D) = ¥ |, @), (r.0)

¥ (r,r) — wave-function of the a

N

(r) n=3

tomic centre of mass motion

in the n-th atomic internal “dressed” state |x,@))

Adiabatic approximation

) = |,00) Wy (r.)

(only the atomic internal state with n=17 is included)



Non-degenerate state with n=1

Adiabatic atomic energies ¢

Full state vector:
D) = ¥ |, @), (r.0)

¥ (r,r) — wave-function of the a

N

(r) n=3

tomic centre of mass motion

in the n-th atomic internal “dressed” state |x,@))

Adiabatic approximation

) = |,00) Wy (r.)

What is the equation of motion for ¥(r,z) ?



Non-degenerate state with n=1

A
Adiabatic approximation: e (r)

) = ()8 (1) ~




Non-degenerate state with n=1

A
Adiabatic approximation: e (r)

D) ~|0(O) W (r.0)
Equation of the atomic motion

in the internal state | x(r))

ind W (r,1) = HY,(r,1)

. “A Y
H= (p 2MM) +V(r)+¢(r) p = —ihV

A = ih<X1(r)|VX1 (r)>

Effective Vector potential A, =A appears




Non-degenerate state with n=1

N

Adiabatic approximation: e (r) n=3

D) = |y, ()Y, (r,0) N n=2
Equation of the atomic motion n=1
in the internal state | (r)) > r

ind W (r,1) = HY,(r,1)

. “A Y
H= (p 2MM) +V(r)+¢(r) p = —ihV

A = ih<X1(r)|VX1 (l')>

Effective Vector potential A, =A appears (due to the position-
dependence of the atomic internal “dressed” state |x(r)) )




Non-degenerate state with n=1

A
Adiabatic approximation: e (r)

D) ~|0(O) W (r.0)
Equation of the atomic motion

in the internal state | x(r))

ind W (r,1) = HY,(r,1)

. “A Y
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Effective Vector potential A, =A appears
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Non-degenerate state with n=1

N

Adiabatic approximation: e (r) n=3

D) = |y, ()Y, (r,0) . n=2
Equation of the atomic motion n=1
in the internal state | (r)) > r

ind W (r,1) = HY,(r,1)

. “A Y
H= (p 2MM) +V(r)+¢(r) p = —ihV

A = ih<X1(r)|VX1(r)>
Effective Vector potential A, =A appears

B=V xA - effective magnetic field (non-trivial situation if B=0 )




To summarise

Effective Vector potential A,, = A appears (due to the position-
dependence of the atomic internal “dressed” state |x(r)) )

A=A, =ih(y@)Vy @)

B =V x A - effective magnetic field (non-trivial situation if B=0 )

Large possibilities to control and shape the effective
magnetic field B by changing the light beams




Light induced effective magnetic field
can be due to

Spatial dependence of laser amplitudes
Spatial dependence of atom-light detuning

Spatial dependence of both the laser
amplitudes and also atom-light detuning

(e.g. optical flux lattices)
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Counter-propagating beams with
spatially shifted protiles

[G. Juzeliinas, J. Ruseckas, P. Ohberg, and M. Flelschhauer,
Phys. Rev. A73, 025602 (2006).]
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Artificial Lorentz force



Counter-propagating beams with
spatially shifted protiles

[G. Juzeliinas, J. Ruseckas, P. Ohberg, and M. Flelschhauer,
Phys. Rev. A73, 025602 (2006).]

1

—
()

B=VxA=0

Artificial Lorentz force (due to photon recoil)



Counter-propagating beams with
spatially shifted protiles

[G. Juzeliinas, J. Ruseckas, P. Ohberg, and M. Fleischhauer,
Phys. Rev. A73, 025602 (2006).]

—

Total magnetic flux is proportional to the sample length L: & = k[

(one can not increase the total flux in the transverse direction)



Counter-propagating beams with
spatially shifted protiles

[G. Juzelilinas, J. Ruseckas, P. Ohberg, and M. Fleischhauer,
Phys. Rev. A73, 025602 (2006).]

—

Total magnetic flux is proportional to the sample length L: & = k[

(one can not increase the total flux in the transverse direction)

No translational symmetry for shifted beams (in the transverse direction):
-> No lattice



Light induced effective magnetic field
due to

Spatial-dependenceoftaseramplitudes—

Spatial dependence of atom-light detuning
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Light induced effective magnetic field

due to
Spatial dependence of atom-light detuning

(a) Experimental layout (b) Level diagram
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Magnetic flux is again determined by the sample
length (rather than the area)!

- One can not create large magnetic flux



Light induced effective magnetic field

can be due to

-Spatial-dependence-oftaseramp

ttoees—

Spatial-o ’ ¢ otoreiahi-de
Spatial dependence of both the laser
amplitudes and also atom-light detuning
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Fttective gauge potentials — due to
position-dependence of both

A) Detuning and

B) Laser amplitudes

e.g. Optical flux lattices

N. R. Cooper, Egys. Rev. Lett. 106, 175301 (2011)

Magnetic flux is determined by the area (!!!) of atomic cloud

Related earlier work:

A. M. Dudarev, R. B. Diener, |. Carusotto, and Q. Niu,
Phys. Rev. Lett. 92, 153005 (2004).



Two atomic internal states

A
L2 2)
Qy + 10,
G 1)

Position-dependent detuning A(r) = Q,

Position-dependence of the Rabi frequencies of atom-
light coupling Q, (r) = Q,+iQ,



Two atomic internal states

A
g 2)
Qy +1iQ,
G 1)

Position-dependent detuning A(r) = Q,
Position-dependence of the Rabi frequencies of atom-light
coupling Q, (r) = Q,+iQ,

Atom-light Hamiltonian:

Q.12 Q-iQ
Q +iQ -Q/2

(2%2 matrix)/




Two atomic internal states

HE 2
O, + 19,
Bl 1

Position-dependent detuning A%r) Q,
Position-dependence of the Rabi frequencies of atom-light

coupling Q, (r) = Q,+iQ),
Atom-light Hamiltonian:

Q.2 Q-iQ
Q +i1Q Q.2
0,70, Q#0, > Coupling between the atomic states >
H,(r) has position-dependent eigenstates ‘X > j=1,2

Ho(r) = -h




Q.2 Q-iQ
Q +iQ, -Q/2

A

Hy(r)x, () =e,(r) (X)) (=12),  Hox)=-h

Effective vector potential for atomic motion in
the lower dressed state |x,(r)):

A

A=A =ih(x @)V ) &(r)

NN

\ n=2

A(r) = %(cos@ ~1)V¢

See, e.g.: J.Dalibard, F. Gerbier, G. Juzeliinas and P. Ohberg.
Rev. Mod. Phys. 83, 1523 (2011).



—> Optical flux lattices
Q.

Two-level system: 2

Q/2 Q-iQ

Hr) =g _iQ,  -Q./2

_ 2y

Q =Qcos(xr/a) L =€ cos(ym/a)
Q =Q,sin(xw/a)sin(yx/a)

Periodic coupling €2 +:€2 and periodic detuning €2_
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—> Optical flux lattices
Q2

Two-level system: 2
ﬁ( ) " Q /2  Q -iQ
o\F) =~ :
Q -iQ -Q/2 Q.

Q =Qcos(xr/a) L =€ cos(ym/a)
Q =Q,sin(xw/a)sin(yx/a)

Periodic coupling Q2 _+i€2 and periodic detuning €2

- Periodic vector potential A =ir(x@)|Vx®) with B=V x A =0

(B — non-staggered)!!!
—>Periodic trapping potential

- —> Optical flux lattice!!!



— Optical flux lattices (square)

y/a A

2 © ® 9, O O

1 e ° ® » °

OF e o © ¥ o

1F e ® o o o

-2 ® ® . > ®
S S R R

Non-zero background magnetic flux over an elementary cell



— Optical flux lattices (square)

y/a A
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Non-zero background magnetic flux over an elementary cell
Periodic trapping potential (the lattice)



OFL can be produced

Using Raman transitions between the
hyperfine states of alkali atoms (and specially

shaped laser fields)

Triangular optical flux lattice
N. R. Cooper and J. Dalibard, EPL, 95 (2011) 66004.

(a)

(b)
L=1/2 I T
New ™
T
g- wr, +0
9+ o_ pol.

Square optical flux lattice:
G. Juzeliunas and |.B. Spielman, in preparation



Characteristic features of light-
induced gauge potentials

No rotation of atomic gas

Effective magnetic field can be shaped by
choosing proper laser beams

The magnetic flux can be made proportional
to the area using the optical flux lattices
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Characteristic features of light-
induced gauge potentials

No rotation of atomic gas

Effective magnetic field can be shaped by
choosing proper laser beams

The magnetic flux can be made proportional
to the area using the optical flux lattices

Generation of dynamical gauge fields???
Extension to the non-Abelian case



It one degenerate atomic internal

dressed state
-- Abelian gauge potentials



Non-degenerate state with n=1

N

Adiabatic approximation: e (r) n=3

D) = |y, ()Y, (r,0) . n=2
Equation of the atomic motion n=1
in the internal state | (r)) > r

ind W (r,1) = HY,(r,1)

. “A Y
H= (p 2MM) +V(r)+¢(r) p = —ihV

A = ih<X1(r)|VX1(r)>
Effective Vector potential A, =A appears

B=V xA - effective magnetic field (non-trivial situation if B=0 )




If more than one degenerate
atomic internal dressed state
--Non-Abelian gauge
potentials



Degenerate states with n=1 and n=2

N

Adiab2atic approximation: e (r) n=4
D) =Y |x, (), (.0 n=3
n=1 —>
n=1, n=2
> r

¥ (r,r) — wave-function of the atomic centre of mass motion
In the n-th atomic internal “dressed” state (n=1,2)



Degenerate states with n=1 and n=2

N

Adiab2atic approximation: e (r) n=4
D) =Y |x, (), (.0 n=3
n=1 —>
n=1, n=2
> r

¥ (r,r) — wave-function of the atomic centre of mass motion
in the n-th atomic internal “dressed” state (n=1,2)

W(r,?) -two-component atomic wave-function
W, (r,1) (spinor wave-function)
- Quasi-spin 1/2

Y(r,?) =(

Repeating the same procedure ...



Degenerate states with n=1 and n=2

N

Adiabzatic approximation: e (r) n=4
D) =Y |x, ()W, (.0 n=3
n=1 —
n=1, n=2

Equation of motion:

2 >r
H = (p—A) +V(@)+g@) Y, =(‘I{(r,t)) - two-comp. atomic

M W@r,0)  wave-function
_ — 2x2 matrix _
A, = lh<X1(r)‘VX ,—(r)>, (l,j=L12) - effective vector potential

2x2 matrix
/

1
B=V><A+l.—hA xA - effective magnetic field (non-trivial situation if B =0 )
A appears due to position-dependence of |x,())
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Degenerate states with n=1 and n=2

N

Adiab2atic approximation: e (r) n=4
D) =Y |x, ()W, (.0 n=3
n=1 —>
n=1, n=2

Equation of motion:

2 >r
H = (p—A) +V(@)+g@) Y, =(‘I{(r,t)) - two-comp. atomic

2M W,(r,t))  wave-function
_ — 2x2 matrix _
A, = lh<Xz(l‘)‘VX ,—(r)>, (l,j=12) - effective vector potential

2x2 matrix
—

1
B=V><A+l.—hA xA - effective magnetic field (non-trivial situation if B =0 )
A appears due to position-dependence of |x,())

If A, Ay, A, do not commute, B#0 even if A is constant !!

- Non-Abelian gauge potentials are formed



Non-Abelian gauge potentials

More than one degenerate dressed state

A

e (r) n=4

n=1, n=2




Tripod contfiguration
0

1 2 3

M.A. Ol'shanii, V.G. Minogin, Quant. Optics 3, 317 (1991)

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K.
Bergmann, Opt. Commun. 185, 144 (1998)

Two degenerate dark states

(Superposition of atomic ground states immune of the atom-
light coupling)



Tripod contfiguration
0

Two degenerate dark states

(Superposition of atomic ground states immune of the atom-
light coupling)

Dark states: destructive interference for transitions to the
excited state

Lasers keep the atoms in these dark (dressed) states



(Non-Abelian) light-induced gauge potentials

Ultracold atoms

for centre of mass motion of dark-state atoms:
(Due to the spatial dependence of the dark states)

® (two dark states)

J. Ruseckas, G. Juzelitinas and P.Ohberg, and M.
Fleischhauer, Phys. Rev. Letters 95, 010404 (2005).



(Non-Abelian) light-induced gauge potentials

Ultracold atoms

for centre of mass motion of dark-state atoms:
(Due to the spatial dependence of the dark states)

A = th{Dn(r)VDm(r)) ® (two dark states)

J. Ruseckas, G. Juzelitinas and P.Ohberg, and M.
Fleischhauer, Phys. Rev. Letters 95, 010404 (2005).



(Non-Abelian) light-induced gauge potentials

|0
A l\\
Q; /| N Qs
S \\
y 1N
11} 2 13) Ultracold atoms

Centre of mass motion of dark-state atoms:

'iﬁﬁ\ll = [i(—mv —~ AV +V + (D] ¥ €& Two component atomic

ot 2m wave-function
Ao = iR{Dn(r)|V Dum(r)) - 2X2 matrix

A - effective vector potential (Mead-Berry connection)



Tripod scheme 0)

i
Two degenerate dark states . O
BN
Qo
A is 2x2 matrix N
V S
1) 2) 3)

Non-Abelian case if A,, A,, A, do not commute

1 ) ) /
B = éfikIFkh Fi = OkA; — 01Ax — ﬁ[Ak,A/]- B — curvature



Tripod scheme 0)

Two degenerate dark states

A Is 2x2 matrix

Non-Abelian case if A,, A,, A, do not commute

1 ) ) /
B = éfikIFkh Fi = OkA; — 01Ax — ﬁ[Ak’A/]- B — curvature

Can be achieved using a plane-wave setup




Three plane wave setup

T. D. Stanescu,, C. Zhang, and V. Galitski,
Phys. Rev. Lett 99, 110403 (2007).

A. Jacob, P. (")hberg, G. Juzelinas and

L. Santos, Appl. Phys. B. 89, 439 (2007).

‘I{(r,t))

1) = (‘P (r,?)

(centre of mass motion, dark-state atoms):

H = %(—-z’ﬁv — hwo )* - (= Rashba-type Hamilltonian)
m
H — )—U(—Ihv + hh'O'_]_)z + ‘-"'rl % Operator

(acting on the subspace of atomic dark states)
- Spin-Orbit coupling of the Rashba-Dresselhaus type
Constant non-Abelian A with [A,,A/]~0, > B ~e,



Drawback of the tripod scheme: degenerate
dark states are not the ground atomic
dressed states - collision-induced loses

Closed loop setup overcomes this drawback:

(a) Couphng SCheme a. Three level: N =3, d¢p =0 b. Four level: N =4, ¢ = —7['/4
1.0—0Ox 7
Q41 \9) g)/
s ,
1) ) = 0 TN L
= 00 \ ;
=t ’ \
Q12 Q34 . . , \ )
o0 \ /
© 05f D> R N SNy —
= \ / Hr)lT>
2) 3) -1.0 AN S
0 1 2 0 1 2 3
Q23 Ring state index, /¢ Ring state index, ¢

D. L. Campbell, G. Juzeliinas and |. B. Spielman, Phys. Rev. A 84, 025602 (2011)



Drawback of the tripod scheme: degenerate
dark states are not the ground atomic
dressed states - collision-induced loses

Closed loop setup overcomes this drawback:

(a) Couphng SCheme a. Three level: N =3, d¢p =0 b. Four level: N =4, ¢ = —7['/4
1.0—0Ox 7
Q41 t 9) g)’
s §
1) |4) S 0.5¢ /RN T
= 00 \ ;
= ’ \
Q19 Q34 I \ N
B0 \ \ /
E _0‘5 B | \L> I T) 17 \ p——
= \ / Hr)lT>
2) 3) 1.0 AN S
0 1 2 0 1 2 3
Q23 Ring state index, /¢ Ring state index, ¢

D. L. Campbell, G. Juzeliinas and |. B. Spielman, Phys. Rev. A 84, 025602 (2011)
Two degenerate internal ground states

- non-Abelian gauge fields for ground-state manifold



Laser fields represent
Counter-propagating
plane waves:

(a) Coupling scheme a. Three level: N =3, 6¢ =0 b. Four level: N =4, §¢ = —7/4
1.0 ,O\ N 7
Q41 ’ \ g 1 /
SN Q
1) 4) S 05f . 1t ST -
.‘é /
= 00
Q12 Q34 o . , . ’
o0 g —
E _05 B ’*l/> ‘T) 17 JSI— /
= \ / Hr)lﬁ
2) 13) 1.0 M -
0 1 2 0 1 2 3
(a3 Ring state index, ¢ Ring state index, ¢

—> Closed loop setup produce Rashba-
Dresselhaus SO coupling for cold atoms

D. L. Campbell, G. Juzeliinas and |. B. Spielman, Phys. Rev. A 84, 025602 (2011)



Conclusions

Abelian gauge potentials appear 1f there is non-trivial
spatial dependence of amplitudes or phases of laser
fields (or spatial variation of atomic levels).

Non-Abelian fields can be formed using even the
plane-wave setups. They can simulate the spin 1/2
Rashba-type Hamiltonian for cold atoms.

Spin 1 Rashba coupling can also be generated
|G.]., J. Ruseckas and J. Dalibard, PRA 81, 053403 (2010)].

For more see:  J.Dalibard, F. Gerbier, G. Juzelilinas

and P. Ohberg. Colloguinm: Artificial gange potentials for
nentral atoms, Rev. Mod. Phys. 83, 1523 (2011)



Thank youl



