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S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?

 What is it good for? What is it good for?



L t tliLecture - outline

 Solid-state electronics and spintronics

 Cold atoms

 Spintronics with cold-atom systems



El t i t t (I)Electronic transport (I)
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El t i t t (II)Electronic transport (II)
VV

Newton’s equation of motion+dissipation:Drift velocity:
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Electronic transport (III)Electronic transport (III)
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T t l ti tiTransport relaxation time
pstr  (metals)
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El t l t i t ti (I)Electron-electron interactions (I)

Fermi-Dirac distribution function
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Electron-electron interactions (II)
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Interactions do not contribute toInteractions do not contribute to
change in drift velocity and do not 

contribute to resistivity in
+

contribute to resistivity in 
translation invariant system 

– need underlying lattice
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El t h i l t ti lElectro-chemical potential
E
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R (I) L t tliRecap (I): Lecture - outline

 Solid-state electronics and spintronics
electric current, resistivity/conductivity, electro-chemical y y
potential, hydrodynamics

 Cold atoms

 Spintronics with cold-atom systems



Wh t i i t i ?
Mott

 Removing the “factor of two for spin

What is spintronics?
 Removing the factor of two for spin 

degeneracy”

j E         
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Spin drag (Orenstein talk?)

 (This ignores non-collinear magnetization 
– for now ignore (should go like T2) 

dynamics and strong spin-orbit coupling, 
heat current...)



t l t l i t f
Silsbee/Johson, Valet/Fert, Bauer (next talk)

magnet-normal metal interface
ferromagnet N l t lferromagnet Normal metal

Charge conservation: 
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R (II) L t tliRecap (II): Lecture - outline

 Solid-state electronics and spintronics
electric current, resistivity/conductivity, electro-chemical y y
potential, hydrodynamics, everything spin-resolved, spin 
accumulation

 Cold atoms Cold atoms

 Spintronics with cold-atom systems Spintronics with cold atom systems



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?

 What is it good for? What is it good for?



Fi t i t d ti ld tFirst: introducting cold atoms



I t d i ld t (I)Introducing cold atoms (I)
Electrons in metals
 charge –e

Trapped cold atoms
 neutral, e.g., Rb-87, Li-6/7, ...g

 Spin S=1/2 
 fermion

g
 (hyperfine) spin F=...
 Bosons and/or fermions

 ionic lattice 
 disorder

 magnetic and/or optical trap 
 disorder can be

 phonons
 spin-orbit coupling

 phonons
 spin-orbit coupling

engineered
spin orbit coupling

 long range e-e interactions
spin orbit coupling

 short-range atomic interactions



I t d i ld t (II)Introducing cold atoms (II)

Laser cooling, harmonic confining potential, 
evaporative cooling,absorption imaging



Introducing cold atoms (III)
Hulet group (talk@ 13:30)

g ( )

This experiment: his expe iment:
few million atoms

(Generally ranges
from 104-109)f )

Lithium 6Lithium 7 Lithium-6
(Fermion, T/T_F~0.1)

Lithium-7
(Boson -> Bose Condensation!)



Fi t B d t (1995)First Bose condensate (1995)

C. Wieman, E. Cornell (Nobel prize, 2001)



T i t f i B d tTwo interfering Bose condensates

Classical waves

“matter waves”matter waves

W. Ketterle (Nobel prize, 2001)



R t ti t tiRotation: quantum vortices

http://jilawww.colorado.edu/bec

NB: rotation acts like magnetic field!!



I t d i ld t (IV)Introducing cold atoms (IV)

 + many more (mostly equilibrium) 
results e g:results...e.g:

happy Bose condensate



C ll ti d (I)Collective modes (I)

Dipole oscillation



C ll ti d (II)Collective modes (II)

Breathing mode



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?

 What is it good for? What is it good for?



Homogeneous cold-atom 
t (I)system (I)

Two spin states
n n n  

Spin-dependent forces:
F F  

No condensate
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Homogeneous cold-atom 
t (II)system (II)

Two spin states
n n n  

Spin-dependent forces:
F F  
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Homogeneous cold-atom 
t (III)system (III)

Two spin states
n n n  

Spin-dependent forces:
F F  
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Homogeneous cold-atom 
t (IV)system (IV)

Two spin states
n n n  

Spin-dependent forces:
F F  

No condensate

 sj n v v  
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n Spin conductivity determined

s

n
m
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  Spin conductivity determined
by interactions (spin drag)



T d ld t t (I)Trapped cold atom systems (I) 

Bulk transport: Size of clouds p f
should be larger than 

mean free path
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relaxation time: ms 
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Both collisionless and
hydrodynamic regimes 
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T d ld t t (II)Trapped cold atom systems (II) 
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T d ld t t (II)Trapped cold atom systems (II) 

22
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d Xnm nm X
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 
Dipole-mode undamped

(Kohn’s theorem)
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i i2
2

2
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
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   sd
s
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  
 

   

M i d ti it fdt dt Measure spin conductivity from 
damping spin-dipole mode



Experiments on cold fermions
Talk by M. Zwierlein, Friday @ 14:40

Experiments on cold fermions

1 

temperature

Experiments with bosons: P. van der Straten (Utrecht) 



R (III) L t tliRecap (III): Lecture - outline

 Solid-state electronics and spintronics
electric current, resistivity/conductivity, electro-chemical y y
potential, hydrodynamics, everything spin-resolved, spin 
accumulation

 Cold atoms
spin currents spin conductivity determined from collectivespin currents, spin conductivity, determined from collective 
modes

 Spintronics with cold-atom systems



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?

 What is it good for? What is it good for?



R (III) L t tliRecap (III): Lecture - outline

 Solid-state electronics and spintronics
electric current, resistivity/conductivity, electro-chemical y y
potential, hydrodynamics, everything spin-resolved, spin 
accumulation

 Cold atoms
spin currents spin conductivity determined from collectivespin currents, spin conductivity, determined from collective 
modes

 Spintronics with cold-atom systems
spin conductivity: bosons vs. fermions



Spin transport properties cold 
(I)gases (I)

sd
s

i ni
m

  
 

   

Measure spin conductivity from 
damping spin-dipole mode

Boltzmann equation leads to:
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2 3 4

1 ~ 1 1a k f k f k f k f k          

Boltzmann equation leads to:
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2 3 4

all momenta

2 3 41 1 +momentum/energy conservation
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f k f k f k f k

    
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Pauli blocking vs. Bose enhancement



Spin transport properties cold 
(II)gases (II)

1 2 91~                  (fermions "blocking" in 3D)         10  ms T 
 




1 2 51~ ~  (bosons "lasing" in quasi-1D)   10  m (use charge= )s T e 
  




Enhancement of spin resistivity 
(reduction of spin conductivity) ( p y)

upon approaching
critical temperature for Bose condensation!critical temperature for Bose condensation!



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?
F d l f i diff iFundamentals of spin transport, different regimes w.r.t. 
electrons in solids (interactions vs. disorder/phonons)

 What is it good for?



M l /tMore examples/teasers:

Poster Erik van der BijlPoster Erik van der Bijl

P Cl W M ij Mi kPosters Clement Wong, Martijn Mink, 
Hedwig van Driel, Alice Bezett



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?
F d l f i diff iFundamentals of spin transport, different regimes w.r.t. 
electrons in solids (interactions vs. disorder/phonons)

 What is it good for?



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?
F d l f i diff iFundamentals of spin transport, different regimes w.r.t. 
electrons in solids (interactions vs. disorder/phonons)

 What is it good for?
Understanding magnon transport/Bose condensation 
magnons in magnetic insulators



Q i ilib iQuasi-equilibrium magnons

 “Magnons with nonzero chemical 
potential:”potential:



M i t tMagnon spin transport

Tserkovnyak/Bauer

S i t t l t lSpin transport accross normal metal –
magnetic insulator interface



One more teaser: Electrically 
d i i BECdriving magnon BEC:

Yaroslav Tserkovnyak/Scott Bender



S i t i ith ld tSpintronics with cold atoms

 Does it exist?

 What can we learn from it?
F d l f i diff iFundamentals of spin transport, different regimes w.r.t. 
electrons in solids (interactions vs. disorder/phonons)

 What is it good for?
Understanding magnon transport/Bose condensation 
magnons in magnetic insulators


