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e Thermoelectrics and Onsager reciprocity
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Heat transport in metals
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Heat and charge transport (electron like)
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Heat and charge transport (hole like)
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Lars Onsager Memorial at NTNU Trondheim

The Nobel Prize in
Chemistry 1968:
“for the discovery of the
reciprocal relations bearing his
name, which are fundamental
for the thermodynamics of
irreversible processes”

Onsager symmetry (1931)
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Landauer-Buttiker formalism (Butcher, 1990)
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e Spin caloritronics
e spin-dependent Seebeck effect (single
particle)
< spin Seebeck effect (collective)

Spin caloritronics d

Thermodynamic analysis of interfacial transport and of the
thermomagnetoelectric system

Mark Johnson and R. H. Silshee
Phys. Rev. B 35, 4959 (1987)

electronics control of charge
transport
spintronics spin electronics control of spin &
charge transport
calorimetry measuring heat
caloritronics heattronics, controlling heat

thermotronics transport

spin caloric transport control of spin, charge
& heat transport

spin caloritronics

Spin caloritronics/caloric transport

» Spin-dependent (magneto) thermoelectrics
0 Spin-dependent Seebeck and Peltier effects

» Spin Seebeck/Peltier effect

» Thermal spin transfer torques

* Spin, planar and anomalous Nernst, Ettingshausen,
and Righi-LeDuc effects

» Heat-driven magnetization dynamics

» Magnonic heat & spin transport

» Nanoscale magnetic heat engines

* Spin-dependent heat conductance (spin heat valve)

» General spin-dependent irreversible thermodynamics

Not: magnetocalorics (adiabatic demagnetization)

Spin-accumulation and spin-current
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‘4 spin diffusion length
D diffusion constant

7y spin-flip relaxation time

Spin dependent conductance

(charge) chemical potential
Mg = 4y — 4, SPin accumulation
G, =G, +G, (charge) conductance
_ G, +G,  (conductance)
G, -G, spin polarization
=J,+J, charge current
J,=J,—-J, spin current

Thermal spin-injection




Spin dependent thermoelectrics Spin-dependent Seebeck effect
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Spin caloritronic cooler Spin Seebeck effect

Uchida et a/. (2008/2010/2011),
Jaworski et al. (2010/2011)
Xiao et al. (2010),

Adachi et al. (2010),

Jia et al. (2011)

Experiments:

Theory:

ferromagnet

ferromagnet

Flipse et al. (2011)

Spin Seebeck effect in Permalloy Spin Seebeck effect [Uchida et a/. (2008)]
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Spin Seebeck effect in YIG

{a) Longitudinal configuration
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Spin torque and spin pumping
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Spin currents cause
magnetization motion
(spin transfer torque,
Slonczewski, 1996).

Onsager
reciprocals

Magnetization motion
causes spin currents
(spin pumping,
Tserkovnyak, 2002).

Magnetic Johnson-Nyquist noise
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Foros et al., 2005
Xiao et al., 2009

Macro-spin model
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- Magnetization fluctuations transport spin and heat currents.

- F does not need to co

nduct electrons.

SSE and issues beyond the simplest model

Volume of the magnet

Magnon-phonon relaxation
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Spatial dependence of sSe
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Uchida et al. (2010); Adachi et al. (2010).

Why are these so similar?
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Think globally but act locally

Cold Coid Sinova
(2010)

Role of the phonons in substrate (Adachi et a/., 2010,2011)

Longitudinal SSE and Slonczewski proposal
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J. Xiao et al. (2010)
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Conclusions

Spin, charge, and heat transport are coupled in
magnetic nanostructures -> spin caloritronics.
In magnetic metals the spin-dependence of the
conductance causes spin-dependent
thermoelectric effects.

The collective dynamics in magnetic insulators
cause completely new phenomena such as the
spin Seebeck effect.

Spin caloritronics provides new strategies for
waste heat scavenging and heat management in
nanostructures.




